Whole numbers and Operations
Activity 1
Math-T101 Spring 2014

Name:
STrife Sevis

Problem 1. Suppose candies are put in bags of 10. Draw a picture to show how many bags $\}^{+}$ you could make with 45 candies and how many candies you would have left over. According to this picture, express the number of candies using multiplication and addition and state what each of the numbers in your expression stands for.

10 candies

10 candies

10 condies

10 candies

00000 be learned be learned later

(a) How many bags of 10 candies can you make with 317 candies and how many candies would you have left over? Based on your answer, express the number of candies using multiplication and addition and state what each of the numbers in your expression stands for.

31 bags of candies and 7 leftover
(b) Suppose that bags of candy are put into boxes, with 10 bags in each box. How many boxes, left-over bags, and left-over candies would you have? Based on your answer, express the total number of candies again, using multiplication and addition and state what each of the numbers in your expression stands for.

$$
\begin{aligned}
& 1 \mathrm{bag}=10 \text { condies } \\
& 1 \text { box }=10 \text { bags }=100 \text { candies }
\end{aligned}
$$

$\begin{array}{r}1 \\ 0 \longdiv { 3 1 } \\ \frac{30}{1} \\ \hline \frac{31}{31}\end{array}$
$1 0 0 \longdiv { 3 1 7 } \Rightarrow 3 1 7$ candies $=3$ boxes of condres and 1 bag of candies leftover $\begin{array}{r}-300 \\ \hline 17\end{array}$

Problem 3. Suppose candies are put in bags of 8. Draw a picture to show how many bags you could make with 45 candies and how many candies you would have left over. According to this picture, express the number of candies using multiplication and addition and state what each of the numbers in your expression stands for.

(a) How many bags of 8 candies can you make with 317 candies and how many candies would you have left over? Based on your answer, express the number of candies using multiplication and addition and state what each of the numbers in your expression stands for.

$$
\begin{array}{ll}
8 \longdiv { 3 9 } & 39 \text { bags o } 8 \text { condres in each } \\
=\frac{24}{77} & (39) \times(8)+5=317 \\
=\frac{72}{5} & \text { *g bags }
\end{array}
$$

39 bags of 8 condres in each $x 5$ candies leftover
(b) Suppose that bags of candy are put into boxes, with 8 bags in each box. How many boxes, left-over bags, and left-over candies would you have? Based on your answer, express the total number of candies again, using multiplication and addition and state what each of the numbers in your expression stands for.
$8 \longdiv { 3 9 } \quad 4$ boxes of 8 bags of candies in each

$$
\frac{-32}{7}
$$

\downarrow
7 bags of 8 undies and 5 candies leftover

BASE-10

1 Counting in base Eight $1,2,3,4,5,6,7,10,11, \ldots ., 17,20, \ldots 70, . .77$,
Problem 5. Use the chart below to make tally marks, write each number in words in base eight, and then write each number in digits in base eight. In the last row, don't actually make the tally marks for 128, but just indicate what you would do based on your tally marks for 64.

Problem 6. Count 3 on to the following numbers. Actually do the counting! Record your result both in words and in digits.
$\begin{array}{lll}\text { a) Two oct one, }(21)_{8} & \text { b) Three oct five, }(35)_{8} & \text { c) Seven oct six, }(76)_{8}\end{array}$
$(22)_{8},(23)_{8},(24)_{8}$ Two oct four
$(36)_{8},(37)_{8},(40)_{8}$ Four outs
$(77)_{8},(100)_{8},(101)_{8}$ one octred me

Problem 7. Count backward by 2 from the following numbers. Actually do the counting! Record your result both in words and in digits.
a) One oct four, $(14)_{8}$
b) Three oct, $(30)_{8}$
c) Seven oct one, $(71)_{8}$
$(13)_{8},(12)_{8}$
$(27)_{8 /}(26)_{8}$
$(70)_{8},(67)_{8}$
one oct two
two cts six
six oct seven

Problem 8. Count backward by 4 from the following numbers. Actually do the counting! Record your result both in words and in digits.

> a) Three oct four, $(34)_{8}$
> b) One oct two, (12) 8
> c) Two octred Two, (202) 8
> $(33)_{8},(32)_{8},(31)_{8} 1(30)_{8}$
> three oct
> $\begin{array}{cc}(11)_{8,},(10)_{81}(7)_{8},(6)_{8} & (201)_{81},(200)_{8},(177)_{8},(176)_{8} \\ \operatorname{six} & \text { one acred } \operatorname{six}\end{array}$

Problem 9. Start at $(47)_{8}$ and count up to the following numbers. Record your counting by listing the numbers written in digits in base 8. Your list should start with the number after $(47)_{8}$, and the last number on your list should be the number up to which you are counting. Then write, in base eight, how many numbers you counted from (47) $)_{8}$ up to each number in the leftmost column of the chart. Be sure to answer in base 8. Think of strategies, and what would be better than listing all numbers. Think of several possible strategies.

$$
\begin{aligned}
& \text { (*) }(47)_{8} \xrightarrow{(1)_{8}}(50)_{8} \xrightarrow{(10)_{8}}(60)_{8} \\
& \text { (*) }(47)_{8} \xrightarrow{(10)_{8}}(57)_{8} \xrightarrow{(10)_{8}}(67)_{8} \xrightarrow{\text { OR }}(47)_{8} \xrightarrow{(1)_{8}}(50)_{8} \xrightarrow{(10)_{8}}(60)_{8} \xrightarrow{(7)_{8}}(67)_{8} \\
& \text { * }(47)_{8} \xrightarrow[(1)_{8}]{ }(50)_{8} \xrightarrow[(10)_{8}]{ }(60)_{8} \xrightarrow[(10)_{8}]{ }(70)_{8} \xrightarrow[(6)_{8}]{ }(76)_{8} \\
& !!(47)_{8} \xrightarrow{(1)_{8}}(50)_{8} \xrightarrow{(10)_{8}}(60)_{8} \xrightarrow{(10)_{8}}(70)_{8} \xrightarrow{(10)_{8}}(100)_{8}
\end{aligned}
$$

Problem 10. When we count by threes in base ten we count "three, six, nine, twelve, etc." Can you count by threes in base eight? Starting at (3) ${ }_{8}$ count by threes to just past octred.

1. List these numbers in base eight.

$$
\begin{aligned}
& (3)_{8},(6)_{8},(11)_{8},(14)_{8},(17)_{8},(22)_{8},(25)_{8},(30)_{8},(33)_{8},(36)_{8},(41)_{8},(44)_{8}, \\
& (47)_{8},(52)_{8},(55)_{8},(60)_{8},(63)_{8},(66)_{8},(71)_{8},(74)_{8},(77)_{8},(102)_{8}
\end{aligned}
$$

2. Describe what patterns you notice in the numbers. How are these patterns similar to or different from counting by threes in base ten? Be sure think in base eight dont start thinking in base ten!

$$
3,6,9,12,15,18,21,24,27,30,33, \ldots . \text { Not very similar }
$$

How about counting by 10 s and 5 s in base-10? is it easier?

$$
5,10,15,20,25,30 \ldots 100 \quad \& 10,20,30,40, \ldots .100
$$

In it simile to counting by $(10)_{8}$ and $(4)_{8}$ in base -8 ?

$$
(4)_{8},(10)_{8},(14)_{8},(20)_{8},(24)_{8},(30)_{8}, \ldots(100)_{8} \quad k \quad(10)_{8},(20)_{8},(30)_{8},(40)_{8}, \ldots(100)_{8}
$$

In part (1), you should have landed on (36) $)_{8}$. Explain why you have to land on this number when counting by threes, and use a picture in your explanation. Your explanation should not just state what this number means in base ten. Try to think in base eight, and utilize the picture (s).

Problem 11. Present $(642)_{8}$ with base blocks, chip model, and write it in expanded form. (Read related base 10 material from 1.2, p.9)
Base blocks

Chip model

octred	out	one
00	00	00
00	00	
00		
6	4	2

Expended Form

$$
\begin{aligned}
{\left[(6)_{8} \times(100)_{8}\right]+\left[(4)_{8} \times(10)_{8}\right]+\left[(2)_{8} \times(1)_{8}\right] } & =(600)_{8}+(40)_{8}+(2)_{8} \\
& =(642)_{8}
\end{aligned}
$$

Problem 12. 1. Look at p. 11 in the book and pay attention to the "thess combinations", and then find all the "Octs Combinations". Use this to calculate $(52)_{8}+(6)_{8}$.

$$
\begin{aligned}
(52)_{8}+(6)_{8} & =(50)_{8}+(2)_{8}+(6)_{8} \\
& =(50)_{8}+(10)_{8}=(60)_{8}
\end{aligned}
$$

2. Calculate $(70)_{8}-(3)_{8}$. Write your solution in several steps which, as above, make clear how to solve this using regrouping and an "octs combination".

$$
\begin{aligned}
(70)_{8}-(3)_{8} & =\left[(60)_{8}+(10)_{8}\right]-(3)_{8} \\
& =(60)_{8}+\left[(10)_{8}-(3)_{8}\right] \\
& =(60)_{8}+(5)_{8} \\
& =(65)_{8}
\end{aligned}
$$

Problem 13. Do the following operations in base eight, using a chip model and base blocks.

1. $(435)_{8}+(32)_{8}=$

Chip model

octred	oct	one
0000	000	0000 0
$(4$	6	$7)_{8}$

2. $(435)_{8}-(32)_{8}=$

I will do chip model and leave base-blocks to students.
\(\left.\begin{array}{c|c|c}octred \& oct \& one \\
\hline 00 \& \varnothing \varnothing \varnothing \& 000 \varnothing \\
00 \& \varnothing \& \\

\hline 0000 \& \& 000\end{array}\right\}\)| no need to |
| :---: |
| show this |
| step |

Problem 14. (a) Illustrate the product (3) ${ }_{8} \times(10)_{8}$ using a set model, measurement model, and a rectangular array model as on p. 25 of your main text. For the array model use the version with the grid lines. Then illustrate the product $(10)_{8} \times(10)_{8}$ using these models.

measurement model:

(3) 8

pectongulor
Array model :

(b) Illustrate the distributive property for the expression $\left.\left((10)_{8}+(3)_{8}\right)\right) \times(10)_{8}$ using a rectangular array, as on p. 27. From this picture, what do you obtain for $(13)_{8} \times(10)_{8}$?

Problem 15. (a) Solve the following two division problems using the fact that $(100)_{8}$ is equal to oct acts: $(100)_{8} \div(4)_{8}=(20)_{8}$ and $(100)_{8} \div(2)_{8}=(40)_{8}$.
(b) Based on your answers to part (a), find two pairs of compatible numbers (with respect to multiplication) in base 8. (See p. 44 for an explanation of compatible numbers in base 10.)

$$
\left[(2)_{8} \times(4)_{8}\right] \times(10)_{8}=(10)_{8} \times(10)_{8}=(100)_{8}\left\{\begin{array}{l}
(20)_{8} \times(4)_{8}=(100)_{8} \\
(40)_{8} \times(2)_{8}=(100)_{8} \\
\text { Problem 16. Illustrate the Quotient-Remainder theorem as specified. Parts (b),(c),(d) are }
\end{array}\right.
$$

Problem 16. Illustrate the Quotient-Remainder theorem as specified. Parts (b),(c),(d) are in base 10. (Whenever there is no subscript indicating a different base, you should assume we are using base 10.)
(a) A number line picture for $(62)_{8} \div(10)_{8}$

$$
(62)_{8}=\left[(10)_{8} \times(6)_{8}\right]+(2)_{8}
$$

(b) A set model, using measurement division, for $13 \div 3 \rightarrow$ the size of the grow is known repeated subtraction of groups of 3 and division asks * of groups

OOO
000
000 \square

$$
(4 \times 3)+1=13
$$

(c) A set model, using partitive division, for $13: 3 \rightarrow$ of groups is known A division equal shoring/distribution asks the size among 3 people

$$
\begin{aligned}
& 0 \\
& (3 \times 4)+1=13
\end{aligned}
$$

(d) A bar diagram, using measurement division, for $68 \div(15$

equal shoring
(e) A bar diagram, using partitive division, for $16 \div(4) \rightarrow$ of groups
 asking for the size of each group

$$
\left.\begin{array}{l}
4 \text { units }=16 \\
\text { lunit }=4
\end{array}\right) \div 4
$$

(f) A rectangular array model for $(37)_{8} \div(10)_{8}$.

| | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |

$$
\begin{aligned}
& {\left[(3)_{8} \times(10)_{8}\right]+(7)_{8}=(37)_{8}} \\
& (30)_{8}+(7)_{8}=(37)_{8}
\end{aligned}
$$

Problem 17. Division by zero:
(a) What is $100 \div 0$? Justify (prove) your answer.

Assume that $100 \div 0$ is defined. Then there is a n number a which satisfies $100=0 \times a$. (ORT)

Then $100=0$, which is not true.
So, there is no such a number a. $100 \div 0$ is undefined
(b) What is $0 \div 0$? Justify (prove) your answer.

Assume that $0 \div 0$ is defined. Then there is a unique number a which satisfies $0=0 \times 9$, according to ORT T

Then $0=0$, which means that this statement is true for every number a. Contradiction because ORT states that and there is a unique quotient (a). So, $0 \div 0$ is undefined.

