
Orthogonal Sets
Lay 6.2

1 Orthogonality for sets

We say that a set S = {u1, . . . ,up} is orthogonal if ui ·uj = 0 for all i 6= j.

Example 1.1. Consider the set S = {u1,u2,u3} ⊆ R3, where

u1 =

1
1
0

 , u2 =

 1
−1
0

 , u3 =

0
0
1

 .
Then S is orthogonal because each pair of distinct vectors in S is orthogonal.
For instance, u1 · u3 = 0 (note that we have a total of 3 combinations to
check).

2 Orthogonality and independence

Theorem 2.1. If S = {u1, . . . , up} is an orthogonal set of nonzero vectors
in Rn, then S is linearly independent. In particular, S is a basis for spanS.

The proof of this theorem is included because it is useful practice for
working with orthogonality and the ideas associated to inner products.

Proof. Take a set S as in the statement of the theorem. Assume that
c1, . . . , cp are scalars such that

c1u1 + . . .+ cpup = 0. (1)
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We will show that each ci is zero, proving the claim. Take the inner product
of both sides of (1) with u1:

u1 · (c1u1 + . . .+ cpup) = u1 · 0
c1u1 · u1 + . . . cpu1 · up = 0

c1‖u1‖2 = 0.

Now, since u1 is not zero, this implies c1 = 0. Repeating this argument for
c2, c3, etc. proves the claim.

Note that orthogonality is a pairwise condition, whereas checking linear
independence requires we deal with all of S at once. So this is one of the
situations where orthogonal vectors make things much easier to handle.

Definition 2.2. An orthogonal basis for a subspace W of Rn is a basis
for W that is also an orthogonal set.

Orthogonal bases are much nicer than non-orthogonal bases because the
weights in linear combinations can be computed easily.

Theorem 2.3. If {u1, . . . , up} is an orthogonal basis for a subspace W of
Rn, then for each y ∈ Rn, the weights in the linear combination

y = c1u1 + . . . cpup

are given by

ci =
y · ui

ui · ui

.

The reason this formula holds is similar to the reason the independence
theorem holds (try dotting with the basis vectors on both sides; Lay also
works the details completely).

Example 2.4. Consider the set {u1,u2,u3} from the first example. This is
orthogonal and so, since it consists of three independent vectors, is a basis

for R3. Now consider the vector y =

3
3
4

 .
y · u1 = 6, y · u2 = 0, y · u3 = 4.

Therefore, y = 3u1 + 4u3 is the unique linear combination that gives y. You
can check and see that this works!
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3 Orthogonal Projections

We will be treating these in more detail in the next lecture, so the notes here
are somewhat brief (see Lay for more detail).

Basically, if u is a nonzero vector in Rn and y is another nonzero vector,
we want to decompose y = ŷ+z, where ŷ is a multiple of u and z is orthogonal
to u. This is the same as projecting onto the line L = {αu : α ∈ R}, which
is the subspace spanned by u.

It turns out that ŷ = y·u
u·uu (see Figure 2 in Lay and the associated

discussion).
We will also frequently write projLy for ŷ (this weird notation will become

clearer).

4 Orthonormal sets

An orthogonal set S is called orthonormal if all its vectors are unit vectors.
Note that we can always produce an orthonormal set from an orthogonal set
by dividing each vector by its norm. Orthonormal sets are useful because
u · u = 1 for each u in the set, making finding the coefficients in linear
combinations easier (note the formula above is simpler if each vector has
norm 1).

There is a nice matrix-based way to check orthonormality.

Theorem 4.1. An m× n matrix U has orthonormal columns if and only if
UTU = I.

Matrices with orthonormal columns define length-preserving and inner
product-preserving linear transformations:

Theorem 4.2. If U is an m × n matrix with orthonormal columns and x
and y are in Rn,

• ‖Ux‖ = ‖x‖;

• (Ux) · (Uy) = x · y.

Example 4.3. Consider

U =

[
cos θ − sin θ
sin θ cos θ

]
,
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where θ is some real number. This is the rotation matrix for rotation about
the origin (counterclockwise) by the angle θ. Note that

UTU =

[
cos2 θ + sin2 θ 0

0 cos2 θ + sin2 θ

]
= I

by the trigonometric identity cos2 θ + sin2 θ = 1. Thus, U preserves lengths
and inner products. This makes sense, because rotations preserve length and
angle between vectors.
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