Inner Products
 Lay 6.1

1 The inner product

Definition 1.1. If \mathbf{u} and \mathbf{v} are in \mathbb{R}^{n} with entries u_{i} and v_{i} respectively, we define their inner product

$$
\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+\ldots+u_{n} v_{n}
$$

Note that by regarding \mathbf{u} and \mathbf{v} as $n \times 1$ matrices, this can be written as $\mathbf{u}^{T} \mathbf{v}$ (considered as a real number instead of a 1×1 matrix). Sometimes it is called the "dot product".

Example 1.2. If

$$
\mathbf{u}=\left[\begin{array}{l}
1 \\
0 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{v}=\left[\begin{array}{c}
3 \\
2 \\
-4
\end{array}\right]
$$

then $\mathbf{u} \cdot \mathbf{v}=(1)(3)+(0)(2)+(4)(-4)=-13$.
Note that \mathbf{u} and \mathbf{v} have to have the same number of entries for the inner product to be defined. The dot product has some nice properties (these follow immediately from the definition):

Theorem 1.3. • $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}$;

- $(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}$;
- $(c \mathbf{u}) \cdot \mathbf{v}=c(\mathbf{u} \cdot \mathbf{v})$;
- $\mathbf{u} \cdot \mathbf{u} \geq 0$, with equality if and only if $\mathbf{u}=\mathbf{0}$.

1.1 Length / Norms

The last property in the above theorem hints at an interpretation of $\mathbf{u} \cdot u$. We define $\|u\|=(\mathbf{u} \cdot \mathbf{u})^{1 / 2}$ to be the norm or length of \mathbf{u}. Then every vector except the zero vector has norm greater than 0 . This also agrees via the pythagorean theorem with the usual notion of length in \mathbb{R}^{2} or \mathbb{R}^{3}, when a vector (a, b, c) is identified with the point with coordinates $x=a, y=b, z=c$. For any scalar c and any vector \mathbf{v}, we have $\|c \mathbf{v}\|=|c|\|\mathbf{v}\|$. A vector with norm 1 is called a unit vector. By dividing any non-unit vector \mathbf{v} by its length, we
produce a unit vector in the "same direction as" \mathbf{v} (in the sense that it lies on the line that goes through the point we identify with \mathbf{v}). I will show an example of this on the board. It is often convenient to turn a basis for a vector space into a basis of unit vectors. So this transformation is useful to us.

1.2 Distance

If \mathbf{v} and \mathbf{w} are vectors in \mathbb{R}^{n}, we define their distance $\operatorname{dist}(\mathbf{v}, \mathbf{w})$ to be the length of the vector $\mathbf{u}-\mathbf{v}$. Note this agrees with the usual notion in \mathbb{R}^{n} for $n=1,2,3$. I will describe this on the board in some detail (with pictures).

2 Orthogonality

A main feature of the inner product is that it lets us generalize the notion of "perpendicular" vectors from two and three dimensions.

Definition 2.1. We say \mathbf{u} and \mathbf{v} are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
This agrees with the notion of perpendicularity in the spaces you are used to (see Figure 5 in Lay, and I will draw on the board as well).

Theorem 2.2. Two vectors are orthogonal if and only if $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.
Notice that this agrees with the usual notion of length in, say, \mathbb{R}^{2}. For instance, if $\mathbf{v}=\left(v_{1}, v_{2}\right)$, then $\mathbf{v}=v_{1} \mathbf{e}_{1}+\mathbf{e}_{2}$ and we have

$$
\|\mathbf{v}\|^{2}=v_{1}^{2}+v_{2}^{2}=\left\|v_{1} \mathbf{e}_{1}\right\|^{2}+\left\|v_{2} \mathbf{e}_{2}\right\|^{2} .
$$

Proof.

$$
\begin{aligned}
\|\mathbf{u}+\mathbf{v}\|^{2} & =(\mathbf{u}+\mathbf{v}) \cdot(\mathbf{u}+\mathbf{v}) \\
& =\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}+2 \mathbf{u} \cdot \mathbf{v}
\end{aligned}
$$

and this last expression equals $\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$ if and only if \mathbf{u} and \mathbf{v} are orthogonal.

3 Orthogonal Complements

Given a subspace W of \mathbb{R}^{n}, we want to define a notion of the "set of vectors orthogonal to $W^{\prime \prime}$.

Definition 3.1. If $W \subseteq \mathbb{R}^{n}$ is a subspace, we say that $\mathbf{z} \in \mathbb{R}^{n}$ is orthogonal to W if \mathbf{z} is orthogonal to every vector in W. The set of all vectors orthogonal to W is denoted by W^{\perp}.

Theorem 3.2. Given a subspace W of \mathbb{R}^{n}, the following facts hold:

- \mathbf{x} is in W^{\perp} if and only if \mathbf{x} is orthogonal to every vector in a set that spans W. This means we don't need to check the (infinitely many!) possible inner products of \mathbf{x} with vectors of W. Instead we can check orthogonality with just these basis vectors.
- W^{\perp} is a subspace of \mathbb{R}^{n}.

Theorem 3.3. Let A be an $m \times n$ matrix. Then

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A, \quad \text { and } \quad(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T} .
$$

4 Angle

There is not a lot that we want to say about angles, except that the dot product between two vectors has a relationship to their angle (when treated as arrows / rays originating at the origin), at least for \mathbb{R}^{2} and \mathbb{R}^{3}.

Proposition 4.1. For vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^{2} or \mathbb{R}^{3}, we have

$$
\mathbf{x} \cdot \mathbf{y}=\|\mathbf{x}\|\|\mathbf{y}\| \cos (\theta)
$$

where θ is the angle between the line segments from the origin to the two points identified with \mathbf{x} and \mathbf{y}.

