Inner Products Lay 6.1

1 The inner product

Definition 1.1. If **u** and **v** are in \mathbb{R}^n with entries u_i and v_i respectively, we define their inner product

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+\ldots+u_nv_n.$$

Note that by regarding **u** and **v** as $n \times 1$ matrices, this can be written as $\mathbf{u}^T \mathbf{v}$ (considered as a real number instead of a 1×1 matrix). Sometimes it is called the "dot product".

Example 1.2. If

$$\mathbf{u} = \begin{bmatrix} 1\\0\\4 \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} 3\\2\\-4 \end{bmatrix},$$

then $\mathbf{u} \cdot \mathbf{v} = (1)(3) + (0)(2) + (4)(-4) = -13.$

Note that \mathbf{u} and \mathbf{v} have to have the same number of entries for the inner product to be defined. The dot product has some nice properties (these follow immediately from the definition):

Theorem 1.3. • $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u};$

- $(\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w};$
- $(c\mathbf{u}) \cdot \mathbf{v} = c(\mathbf{u} \cdot \mathbf{v});$
- $\mathbf{u} \cdot \mathbf{u} \ge 0$, with equality if and only if $\mathbf{u} = \mathbf{0}$.

1.1 Length / Norms

The last property in the above theorem hints at an interpretation of $\mathbf{u} \cdot u$. We define $||u|| = (\mathbf{u} \cdot \mathbf{u})^{1/2}$ to be the **norm** or length of \mathbf{u} . Then every vector except the zero vector has norm greater than 0. This also agrees via the pythagorean theorem with the usual notion of length in \mathbb{R}^2 or \mathbb{R}^3 , when a vector (a, b, c) is identified with the point with coordinates x = a, y = b, z = c. For any scalar c and any vector \mathbf{v} , we have $||c\mathbf{v}|| = |c| ||\mathbf{v}||$. A vector with norm 1 is called a unit vector. By dividing any non-unit vector \mathbf{v} by its length, we

produce a unit vector in the "same direction as" \mathbf{v} (in the sense that it lies on the line that goes through the point we identify with \mathbf{v}). I will show an example of this on the board. It is often convenient to turn a basis for a vector space into a basis of unit vectors. So this transformation is useful to us.

1.2 Distance

If **v** and **w** are vectors in \mathbb{R}^n , we define their distance dist(**v**, **w**) to be the length of the vector **u** - **v**. Note this agrees with the usual notion in \mathbb{R}^n for n = 1, 2, 3. I will describe this on the board in some detail (with pictures).

2 Orthogonality

A main feature of the inner product is that it lets us generalize the notion of "perpendicular" vectors from two and three dimensions.

Definition 2.1. We say **u** and **v** are **orthogonal** if $\mathbf{u} \cdot \mathbf{v} = 0$.

This agrees with the notion of perpendicularity in the spaces you are used to (see Figure 5 in Lay, and I will draw on the board as well).

Theorem 2.2. Two vectors are orthogonal if and only if $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$.

Notice that this agrees with the usual notion of length in, say, \mathbb{R}^2 . For instance, if $\mathbf{v} = (v_1, v_2)$, then $\mathbf{v} = v_1 \mathbf{e}_1 + \mathbf{e}_2$ and we have

$$\|\mathbf{v}\|^2 = v_1^2 + v_2^2 = \|v_1\mathbf{e}_1\|^2 + \|v_2\mathbf{e}_2\|^2.$$

Proof.

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v})$$
$$= \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 + 2\mathbf{u} \cdot \mathbf{v}$$

and this last expression equals $\|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$ if and only if \mathbf{u} and \mathbf{v} are orthogonal.

3 Orthogonal Complements

Given a subspace W of \mathbb{R}^n , we want to define a notion of the "set of vectors orthogonal to W".

Definition 3.1. If $W \subseteq \mathbb{R}^n$ is a subspace, we say that $\mathbf{z} \in \mathbb{R}^n$ is orthogonal to W if \mathbf{z} is orthogonal to every vector in W. The set of all vectors orthogonal to W is denoted by W^{\perp} .

Theorem 3.2. Given a subspace W of \mathbb{R}^n , the following facts hold:

- **x** is in W[⊥] if and only if **x** is orthogonal to every vector in a set that spans W. This means we don't need to check the (infinitely many!) possible inner products of **x** with vectors of W. Instead we can check orthogonality with just these basis vectors.
- W^{\perp} is a subspace of \mathbb{R}^n .

Theorem 3.3. Let A be an $m \times n$ matrix. Then

 $(\operatorname{Row} A)^{\perp} = \operatorname{Nul} A, \quad and \quad (\operatorname{Col} A)^{\perp} = \operatorname{Nul} A^{T}.$

4 Angle

There is not a lot that we want to say about angles, except that the dot product between two vectors has a relationship to their angle (when treated as arrows / rays originating at the origin), at least for \mathbb{R}^2 and \mathbb{R}^3 .

Proposition 4.1. For vectors \mathbf{x} and \mathbf{y} in \mathbb{R}^2 or \mathbb{R}^3 , we have

$$\mathbf{x} \cdot \mathbf{y} = \|\mathbf{x}\| \|\mathbf{y}\| \cos(\theta),$$

where θ is the angle between the line segments from the origin to the two points identified with \mathbf{x} and \mathbf{y} .