
Inner Products
Lay 6.1

1 The inner product

Definition 1.1. If u and v are in Rn with entries ui and vi respectively, we define their
inner product

u · v = u1v1 + . . .+ unvn.

Note that by regarding u and v as n × 1 matrices, this can be written as uTv (considered
as a real number instead of a 1× 1 matrix). Sometimes it is called the “dot product”.

Example 1.2. If

u =

1
0
4

 and v =

 3
2
−4

 ,
then u · v = (1)(3) + (0)(2) + (4)(−4) = −13.

Note that u and v have to have the same number of entries for the inner product to
be defined. The dot product has some nice properties (these follow immediately from the
definition):

Theorem 1.3. • u · v = v · u;

• (u + v) ·w = u ·w + v ·w;

• (cu) · v = c(u · v);

• u · u ≥ 0, with equality if and only if u = 0.

1.1 Length / Norms

The last property in the above theorem hints at an interpretation of u · u. We define
‖u‖ = (u ·u)1/2 to be the norm or length of u. Then every vector except the zero vector has
norm greater than 0. This also agrees via the pythagorean theorem with the usual notion
of length in R2 or R3, when a vector (a, b, c) is identified with the point with coordinates
x = a, y = b, z = c. For any scalar c and any vector v, we have ‖cv‖ = |c| ‖v‖. A vector
with norm 1 is called a unit vector. By dividing any non-unit vector v by its length, we
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produce a unit vector in the “same direction as” v (in the sense that it lies on the line that
goes through the point we identify with v). I will show an example of this on the board.
It is often convenient to turn a basis for a vector space into a basis of unit vectors. So this
transformation is useful to us.

1.2 Distance

If v and w are vectors in Rn, we define their distance dist(v,w) to be the length of the
vector u − v. Note this agrees with the usual notion in Rn for n = 1, 2, 3. I will describe
this on the board in some detail (with pictures).

2 Orthogonality

A main feature of the inner product is that it lets us generalize the notion of “perpendicular”
vectors from two and three dimensions.

Definition 2.1. We say u and v are orthogonal if u · v = 0.

This agrees with the notion of perpendicularity in the spaces you are used to (see Figure
5 in Lay, and I will draw on the board as well).

Theorem 2.2. Two vectors are orthogonal if and only if ‖u + v‖2 = ‖u‖2 + ‖v‖2.

Notice that this agrees with the usual notion of length in, say, R2. For instance, if
v = (v1, v2), then v = v1e1 + e2 and we have

‖v‖2 = v21 + v22 = ‖v1e1‖2 + ‖v2e2‖2.

Proof.

‖u + v‖2 = (u + v) · (u + v)

= ‖u‖2 + ‖v‖2 + 2u · v,

and this last expression equals ‖u‖2 + ‖v‖2 if and only if u and v are orthogonal.

3 Orthogonal Complements

Given a subspace W of Rn, we want to define a notion of the “set of vectors orthogonal to
W”.

Definition 3.1. If W ⊆ Rn is a subspace, we say that z ∈ Rn is orthogonal to W if z is
orthogonal to every vector in W . The set of all vectors orthogonal to W is denoted by W⊥.

Theorem 3.2. Given a subspace W of Rn, the following facts hold:
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• x is in W⊥ if and only if x is orthogonal to every vector in a set that spans W . This
means we don’t need to check the (infinitely many!) possible inner products of x with
vectors of W . Instead we can check orthogonality with just these basis vectors.

• W⊥ is a subspace of Rn.

Theorem 3.3. Let A be an m× n matrix. Then

(RowA)⊥ = NulA, and (ColA)⊥ = NulAT .

4 Angle

There is not a lot that we want to say about angles, except that the dot product between
two vectors has a relationship to their angle (when treated as arrows / rays originating at
the origin), at least for R2 and R3.

Proposition 4.1. For vectors x and y in R2 or R3, we have

x · y = ‖x‖ ‖y‖ cos(θ),

where θ is the angle between the line segments from the origin to the two points identified
with x and y.

3


