Eigenvectors: Similarity and Bases Lay 5.4

November 11, 2013

1 Bases and coordinate vectors

Remember that if $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ is a basis for \mathbb{R}^{n}, then for each $\mathbf{x} \in \mathbb{R}^{n}$, we can write $\mathbf{x}=c_{1} \mathbf{b}_{1}+\ldots+c_{n} \mathbf{b}_{n}$ for some unique set of scalars c_{1}, \ldots, c_{n}. We call the vector whose i th entry is c_{i} the \mathcal{B}-coordinate vector $[\mathbf{x}]_{\mathcal{B}}$.
Example 1.1. The set $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

is a basis for \mathbb{R}^{2}. If

$$
\mathbf{x}=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

then $\mathbf{x}=2 \mathbf{b}_{1}-2 \mathbf{b}_{2}$, so

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
2 \\
-2
\end{array}\right]
$$

2 Linear transformations in a basis

Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Suppose we have two bases $\mathcal{B}=\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ and $\mathcal{C}=\left\{\mathbf{c}_{1}, \ldots, \mathbf{c}_{m}\right\}$, for \mathbb{R}^{n} and \mathbb{R}^{m} respectively. If \mathbf{x} is any vector in \mathbb{R}^{n}, then $T(\mathbf{x}) \in \mathbb{R}^{m}$, and we can write \mathbf{x} and its image in \mathcal{B}-coordinates and \mathcal{C}-coordinates respectively, with corresponding coordinate vectors $[\mathbf{x}]_{\mathcal{B}},[T(\mathbf{x})]_{\mathcal{C}}$. For definiteness, let's say that $\mathbf{x}=r_{1} \mathbf{b}_{1}+$ $\ldots+r_{n} \mathbf{b}_{n}$. Then $T(\mathbf{x})=r_{1} T\left(\mathbf{b}_{1}\right)+\ldots r_{n} T\left(\mathbf{b}_{n}\right)$, by linearity. Now, each $T\left(\mathbf{b}_{i}\right)$ appearing in this sum can be written as a linear combination of the \mathbf{c}_{i} 's. If you write each of these linear combinations and collect terms, you get a formula for the \mathcal{C}-coordinates of $T(\mathbf{x})$ in terms of the \mathcal{B}-coordinates of \mathbf{x}. It is

$$
[T(\mathbf{x})]_{\mathcal{C}}=M[\mathbf{x}]_{\mathcal{B}}
$$

where the $m \times n$ matrix M is

$$
M=\left[\begin{array}{lll}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & \cdots & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}}
\end{array}\right]
$$

We call M the matrix for T relative to the bases \mathcal{B} and \mathcal{C}. We saw in a past lecture that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be written as multiplication by a matrix A. The matrix A represents "how the function T looks from the point of view of the standard bases". The matrix M we constructed above describes how the transformation looks from the point of view of \mathcal{B} and \mathcal{C}.

Example 2.1. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation with standard matrix

$$
A=\left[\begin{array}{ll}
1 & 4 \\
1 & 4 \\
0 & 1
\end{array}\right]
$$

Let \mathcal{B} be the basis for \mathbb{R}^{2} from the previous example, and consider a basis for \mathbb{R}^{3} denoted by $\mathcal{C}=\left\{\mathbf{c}_{1}, \mathbf{c}_{2}, \mathbf{c}_{3}\right\}$, where

$$
\mathbf{c}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{c}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{c}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

Then

$$
T\left(\mathbf{b}_{1}\right)=\left[\begin{array}{l}
9 \\
9 \\
2
\end{array}\right], \quad T\left(\mathbf{b}_{2}\right)=\left[\begin{array}{c}
5 \\
5 \\
1
\end{array}\right] .
$$

Thus,

$$
\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{c}
9 \\
0 \\
-7
\end{array}\right], \quad\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}=\left[\begin{array}{c}
5 \\
0 \\
-4
\end{array}\right] .
$$

Therefore, the matrix M is given by

$$
\left[\begin{array}{cc}
9 & 5 \\
0 & 0 \\
-7 & -4
\end{array}\right]
$$

2.1 On the same space \mathbb{R}^{n}

The above was introduced largely to consider what diagonalization actually means. Let's consider a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ (so the standard matrix A of T is square).

Theorem 2.2. Let the $n \times n$ matrix A be diagonalizable. If $A=P D P^{-1}$ (with D diagonal), and we denote by \mathcal{B} the basis of \mathbb{R}^{n} formed from the columns of P, then D is the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$.

When we write a matrix product $A \mathbf{x}$ in its diagonalized form $P D P^{-1} \mathbf{x}$, what we are actually doing in the computation of $P D P^{-1} \mathbf{x}$ is the following (where $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}$ are the basis of eigenvectors of A):

- Mapping \mathbf{x} to $[\mathbf{x}]_{\mathcal{B}}$
- Multiplying the entries of $[\mathbf{x}]_{\mathcal{B}}$ by the corresponding eigenvalues;
- Mapping back to the standard basis $\left\{\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right\}$.

Example 2.3. We will illustrate the above list with a specific example. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]
$$

A has eigenvalues -1 and 3 , with corresponding eigenvectors $\mathbf{b}_{1}=(-1,1)$ and $\mathbf{b}_{2}=(1,1)$. This means that $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right], \quad D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 3
\end{array}\right], \quad P^{-1}=\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right] .
$$

Let's take $\mathbf{x}=(2,-1)$. Then $A \mathbf{x}=(0,3)$ by explicit calculation. We will show how this arises from the form $A=P D P^{-1}$.

- $P^{-1} \mathbf{x}=(-3 / 2,1 / 2)$. Notice that $\mathbf{x}=(-3 / 2) \mathbf{b}_{1}+(1 / 2) \mathbf{b}_{2}$, so $P^{-1} \mathbf{x}=[\mathbf{x}]_{\mathcal{B}}$, as described above.
- D acts diagonally on $[\mathbf{x}]_{\mathcal{B}}$ to give $(3 / 2,3 / 2)$. This agrees with the fact that $\mathbf{x}=$ $(-3 / 2) \mathbf{b}_{1}+(1 / 2) \mathbf{b}_{2}$ and the \mathbf{b}_{i} 's are eigenvectors.
- P now changes basis back to the standard basis, and we see $P\left[\begin{array}{l}3 / 2 \\ 3 / 2\end{array}\right]=\left[\begin{array}{l}0 \\ 3\end{array}\right]$, as we calculated earlier.

3 Similarity of Matrix Representations

For linear transformations mapping \mathbb{R}^{n} to \mathbb{R}^{n}, the characterization of similar matrices from the last section holds whether or not the transformation is diagonalizable. That is:

Theorem 3.1. If we have an $n \times n$ matrix A such that $A=P C P^{-1}$, then C is the \mathcal{B}-matrix for the transformation $\mathbf{x} \mapsto A \mathbf{x}$, where \mathcal{B} is the basis made up of the columns of P. Similarly, if \mathcal{B} is a basis for \mathbb{R}^{n}, then the \mathcal{B}-matrix for A is given by $P^{-1} A P$, where P is the matrix whose columns are the vectors in \mathcal{B}.

Example 3.2. Consider the matrix A and the basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ for \mathbb{R}^{2} given by

$$
A=\left[\begin{array}{ll}
1 & 3 \\
0 & 0
\end{array}\right], \quad \mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right], \quad \mathbf{b}_{2}=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

Then if T is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$, then the \mathcal{B}-matrix for T (denoted by $[T]_{\mathcal{B}}$) is given by $[T]_{\mathcal{B}}=P^{-1} A P$, where

$$
P=\left[\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right], \quad P^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right]
$$

Doing the calculation of the product $P^{-1} A P$ gives

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cc}
2 & 1 \\
-2 & -1
\end{array}\right]
$$

