Diagonalization Lay 5.3

November 8, 2013

1 The importance of diagonal matrices

We talked last time about how easy it is to compute the action of a matrix on eigenvectors. It is even easier if the matrix is diagonal, since its eigenvectors are the standard basis. Notice that if D is a diagonal matrix-for instance,

$$
D=\left[\begin{array}{ll}
3 & 0 \\
0 & 7
\end{array}\right]
$$

then

$$
D\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=D x_{1} \mathbf{e}_{1}+D x_{2} \mathbf{e}_{2}=3 x_{1} \mathbf{e}_{1}+7 x_{2} \mathbf{e}_{2}=\left[\begin{array}{l}
3 x_{1} \\
7 x_{2}
\end{array}\right]
$$

It is also trivial to compute matrix powers:

$$
D^{2}=\left[\begin{array}{cc}
9 & 0 \\
0 & 49
\end{array}\right], \quad \text { etc. }
$$

It is also easy to compute matrix powers if A is similar to a diagonal matrix D :
Example 1.1. Let

$$
A=\left[\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right]=P D P^{-1}
$$

Where

$$
P=\left[\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right], D=\left[\begin{array}{cc}
-2 & 0 \\
0 & 4
\end{array}\right], P^{-1}=\left[\begin{array}{cc}
-1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

Then

$$
A^{2}=P D P^{-1} P D P^{-1}=P D^{2} P^{-1}=P D P^{-1}=P\left[\begin{array}{cc}
4 & 0 \\
0 & 16
\end{array}\right] P^{-1}
$$

Similarly, for any positive integer $k, A^{k}=P D^{k} P^{-1}$.

2 Diagonalization

Definition 2.1. We say a matrix A is diagonalizable if it is similar to a diagonal matrix D.

Theorem 2.2. An $n \times n$ matrix A is diagonalizable if and only if it has n linearly independent eigenvectors. In fact, D is a diagonal matrix with $A=P D P^{-1}$ if and only if P is a matrix whose columns are n linearly independent eigenvectors of A. In this case, the nth diagonal entry in D corresponds to the nth column of P.

Proof. If $A=P D P^{-1}$ for a diagonal D, let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ be the columns of P. Multiply on the right by P to see that $A P=P D$. Now notice

$$
A P=\left[\begin{array}{lll}
A \mathbf{v}_{1} & \ldots & A \mathbf{v}_{n}
\end{array}\right], \quad P D=\left[\begin{array}{lll}
\lambda_{1} \mathbf{v}_{1} & \ldots & \lambda_{n} \mathbf{v}_{n} \tag{1}
\end{array}\right],
$$

where λ_{i} is the i th diagonal entry of D. Matching column by column, we see that the columns of P are eigenvectors of A and must be independent, since P is invertible; moreover, λ_{i} is the eigenvalue corresponding to \mathbf{v}_{i}. On the other hand, if A has n independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, then set $P=\left[\begin{array}{lll}\mathbf{v}_{1} & \ldots & \mathbf{v}_{n}\end{array}\right]$. The columns of P are independent, so it is invertible. Let us define $D=P^{-1} A P$, so that $A=P D P^{-1}$ and therefore $A P=P D$. By the same reasoning as the first equation in (1), we have $A P=\left[\begin{array}{lll}A \mathbf{v}_{1} & \ldots & A \mathbf{v}_{n}\end{array}\right]=\left[\begin{array}{lll}\lambda_{1} \mathbf{v}_{1} & \ldots & \lambda_{n} \mathbf{v}_{n}\end{array}\right]$, where λ_{i} is the i th eigenvalue of A. Therefore, $P D=\left[\begin{array}{lll}\lambda_{1} \mathbf{v}_{1} & \ldots & \lambda_{n} \mathbf{v}_{n}\end{array}\right]$. Since the columns of $P D$ are linear combinations of the columns of P, and since the columns of P are linearly independent, it follows that D must be diagonal.

3 Diagonalization

We outline the diagonalization procedure for an $n \times n$ matrix A :

- Find the eigenvalues of A.
- Find bases for the corresponding eigenspaces.
- Figure out if you have n linearly independent eigenvectors. If the sum of dimensions of the eigenspaces of A is equal to n, you're set and the union of the bases for the different eigenspaces will consist of n linearly independent eigenvectors. Otherwise, it's not diagonalizable.
- P is the matrix whose columns are the eigenvectors.
- D is the matrix whose i th entry is the eigenvalue for the i th column of P.

Example 3.1. Diagonalize

$$
A=\left[\begin{array}{lll}
0 & 2 & 2 \\
2 & 0 & 2 \\
2 & 2 & 0
\end{array}\right]
$$

The eigenvalues of A are $\lambda_{1}=4$ and $\lambda_{2}=-2$. A basis for the λ_{1} eigenspace is provided by

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]\right\}
$$

and a basis for the λ_{2} eigenspace is provided by

$$
\left\{\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\}
$$

Therefore, the matrices

$$
D=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right], \quad P=\left[\begin{array}{ccc}
1 & -1 & -1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right], \quad P^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
1 & 1 & 1 \\
-1 & -1 & 2 \\
-1 & 2 & -1
\end{array}\right] .
$$

The eigenvectors we chose within each eigenspace were independent because we found a basis. Note that the eigenvectors from different eigenspaces are automatically independent, as predicted by our theorem from before.

It is not true that every matrix is diagonalizable. However, it is easy to see the following theorem holds:

Theorem 3.2. If an $n \times n$ matrix has n distinct eigenvalues, then it is diagonalizable.
What about if there are not n eigenvalues? Then the following theorem takes care of things:

Theorem 3.3. If A is $n \times n$ with distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{p}$, then:

- For each k, the eigenspace corresponding to λ_{k} has dimension \leq the algebraic multiplicity of λ_{k};
- A is diagonalizable if and only if the sum of the dimensions of the eigenspaces is n (we actually noted this above already);
- A is diagonalizable if and only if (a) its characteristic polynomial factors into linear factors (i.e., if and only if it has n real roots, possibly having multiplicity bigger than one) and (b) the dimension of the eigenspace corresponding to each eigenvalue λ_{k} is equal to the algebraic multiplicity of λ_{k};
- If A is diagonalizable and if for each k, \mathcal{B}_{k} is a basis for the eigenspace corresponding to λ_{k}, then the vectors in the union $\mathcal{B}_{1} \cup \ldots \cup \mathcal{B}_{k}$ form a basis for \mathbb{R}^{n} of eigenvectors of A.

