Solutions of Linear Systems Reading: Lay 1.5

September 6, 2013

The amount of extra theory in this section is small. What theory we need to introduce can mostly be explained by examples. So I am going to run the lecture on the following pattern: I do one example, then you try a similar one. We will do this for three different examples. Along the way, I will explain what theory we need.

The first section is material that was technically covered last class (from Lay 1.4).

1 From last time

Recall that last time, we discussed matrix equations. The big question was whether a set of vectors $\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}$ spanned \mathbb{R}^{m} :

- Does $\operatorname{span}\left\{\mathbf{a}_{1}, \ldots, \mathbf{a}_{n}\right\}=\mathbb{R}^{m}$?

An equivalent way to state this problem was in terms of the matrix A whose first column is \mathbf{a}_{1}, second column is \mathbf{a}_{2}, etc:

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \ldots & \mathbf{a}_{n}
\end{array}\right] .
$$

With this definition of A, we can restate the above "big question" in this form:

- Does the equation $A \mathbf{x}=\mathbf{b}$ have a solution for every $\mathbf{b} \in \mathbb{R}^{m}$?

Example 1.1. (I will work this example in class.) Does the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ with vectors

$$
\mathbf{u}=\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

span \mathbb{R}^{3} ?
Write the matrix whose columns are $\mathbf{u}, \mathbf{v}, \mathbf{w}$:

$$
\left[\begin{array}{lll}
3 & 1 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

How can we tell from this matrix whether the set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ spans \mathbb{R}^{3} ? The answer: they span \mathbb{R}^{3} if and only if the matrix above has a pivot position in each row. So we start computing the RREF:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
3 & 1 & 0 \\
0 & 2 / 3 & 0 \\
0 & 1 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
3 & 1 & 0 \\
0 & 2 / 3 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

You can actually see at this point that there is a pivot in each row (ask yourself why), so we will stop. So the answer is that $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ spans \mathbb{R}^{3}.

Example 1.2. (I will have you work this during class.) Let

$$
\mathbf{t}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \mathbf{w}=\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right] .
$$

Does $\{\mathbf{t}, \mathbf{u}, \mathbf{v}, \mathbf{w}\}$ span \mathbb{R}^{3} ? We write the matrix whose columns are these vectors and start row reduction:

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

At this point, it is already clear there will be no pivot in the bottom row! So the answer is no, the vectors do not span.

2 Back to one vector

We just talked about spanning. Now to the "easy" problem of whether $A \mathbf{x}=\mathbf{b}$ has a solution for one particular \mathbf{b}. In fact, let's make it easier on ourselves and take $\mathbf{b}=\mathbf{0}$.

- Given a matrix A does $A \mathbf{x}=\mathbf{0}$ have a solution? Or more than one solution?

It is very easy to see that no matter what A is, there is always at least one x that solves this equation. Specifically, the zero vector is always a solution: $A \mathbf{0}=\mathbf{0}$ for any matrix A . We call this the trivial solution.

So our question should actually be

- Given a matrix A does $A \mathbf{x}=\mathbf{0}$ have a solution which is not the trivial solution?

We call solutions which are not $\mathbf{0}$ "nontrivial solutions". We know how to answer this question already by using linear systems. We illustrate via examples.

Example 2.1. Given

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
1 & 1 & 3 \\
0 & 1 & 1
\end{array}\right]
$$

does the equation $A \mathrm{x}=0$ have a nontrivial solution?
We note that if we label the entries of \mathbf{x} by the names x_{1}, x_{2}, x_{3}, this is equivalent to asking whether the linear system

$$
\begin{aligned}
2 x_{1}+x_{2} & =0 \\
x_{1}+x_{2}+3 x_{3} & =0 \\
x_{2}+x_{3} & =0
\end{aligned}
$$

has a solution other than the trivial solution $x_{1}=x_{2}=x_{3}=0$. So we write the augmented matrix and row reduce:

$$
\begin{gathered}
{\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & 1 & 3 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 1 / 2 & 3 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 1 / 2 & 3 & 0 \\
0 & 0 & -5 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & -5 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
2 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & -5 & 0
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] .}
\end{gathered}
$$

This linear system has no free variables, so there is only one solution: $x_{1}=$ $x_{2}=x_{3}=0$. So there is no nontrivial solution to our matrix equation.

Example 2.2. Given

$$
A=\left[\begin{array}{lll}
2 & 1 & 3 \\
1 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

does the equation $A \mathbf{x}=0$ have a nontrivial solution? We again write the augmented matrix and compute the RREF:

$$
\left[\begin{array}{llll}
2 & 1 & 3 & 0 \\
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
2 & 1 & 3 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
2 & 1 & 3 & 0 \\
0 & 1 / 2 & 1 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .}
\end{aligned}
$$

From here it is easy to see that the variable x_{3} will be free. If you work out the rest of the RREF calculation, you get

$$
\left[\begin{array}{llll}
1 & 0 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

For any choice of x_{3}, the choices $x_{1}=-x_{3}, x_{2}=-x_{3}$ give $A \mathbf{x}=\mathbf{0}$. So there is a nontrivial solution.

What does the solution we just got mean? It means that the solution set of $A \mathrm{x}=\mathbf{0}$ is the collection of all vectors of the form

$$
\mathbf{x}=\left[\begin{array}{c}
-x_{3} \\
-x_{3} \\
x_{3}
\end{array}\right]
$$

or equivalently, all vectors of the form

$$
\mathbf{x}=x_{3}\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]
$$

for real x_{3}. This means that the solution set is equal to

$$
\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right]\right\}
$$

This is a general fact:
Theorem 2.3. Let A be a matrix. The solution set of $A \mathbf{x}=\mathbf{0}$ always has the form

$$
\operatorname{span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}\right\}
$$

for some vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$.

Let's show one more quick example, which is already in RREF for us.
Example 2.4. What is the solution set of $A \mathrm{x}=\mathbf{0}$, where

$$
A=\left[\begin{array}{lll}
1 & 1 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ?
$$

There are two free variables and so for any choice of x_{2} and x_{3}, taking

$$
x_{1}=-x_{2}-2 x_{3}
$$

gives a solution. This means that the solution set is all vectors of the form

$$
\begin{align*}
{\left[\begin{array}{c}
-x_{2}-2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0
\end{array}\right]+\left[\begin{array}{c}
-2 x_{3} \\
0 \\
x_{3}
\end{array}\right] \\
& =x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right] . \tag{1}
\end{align*}
$$

This is just another way of writing

$$
\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right]\right\}
$$

so the theorem above makes sense.

3 Parametric form

Any vector equation of the form

$$
\mathbf{v}=c \mathbf{u}+d \mathbf{w}
$$

where c and d are allowed to vary over real numbers is called a parametric vector equation (in principle, we could have more vectors than just two). So any solution like (1) is called a solution in parametric vector form. This is just a fancy name.

4 Nonhomogeneous systems

We've dealt with equations of the form

$$
A \mathbf{x}=\mathbf{b}
$$

for $\mathbf{b}=\mathbf{0}$, called a homogeneous system. We're now going to talk about the case where $\mathbf{b} \neq \mathbf{0}$, which we call a nonhomogenous system.

First, a question: say that \mathbf{y} solves the homogeneous problem $A \mathbf{y}=\mathbf{0}$ and \mathbf{x} solves the nonhomegeneous problem $A \mathbf{x}=\mathbf{b}$. Then what does $A(\mathbf{x}+\mathbf{y})$ equal?

$$
A(\mathbf{x}+\mathbf{y})=A \mathbf{x}+A \mathbf{y}=\mathbf{b}+\mathbf{0}=\mathbf{b}
$$

On the other hand, say \mathbf{z}, like \mathbf{x}, satisfies $A \mathbf{z}=\mathbf{b}$ Then $A(\mathbf{x}-\mathbf{z})=$ $A \mathbf{x}-A \mathbf{z}=0$. So $\mathbf{x}-\mathbf{z}$ solves the homogeneous problem. We summarize:

- If \mathbf{x} solves the non homogeneous problem $A \mathbf{x}=\mathbf{b}$ and \mathbf{y} solves the homogeneous problem, then $A(\mathbf{x}+c \mathbf{y})=\mathbf{b}$ for every scalar c.
- If \mathbf{x} and \mathbf{z} both solve the non homogeneous problem (for the same vector \mathbf{b}), then

$$
A(\mathbf{x}-\mathbf{z})=\mathbf{0} .
$$

By the above, the following fact is true: given the non homogeneous problem $A \mathbf{x}=\mathbf{b}$, we can write the general solution (i.e., describe the entire solution set) in the form

$$
\begin{equation*}
\left\{\mathbf{z}+c_{1} \mathbf{y}_{1}+\ldots+c_{2} \mathbf{y}_{k}\right\} \tag{2}
\end{equation*}
$$

Where \mathbf{z} is one particular solution $(A \mathbf{z}=\mathbf{b})$ and where each \mathbf{y}_{i} satisfies the homogeneous problem. This is the reason why we introduced the "parametric form" notation above.

In class, if there is time, I will stop here and have you try Ex. 3 from Lay 1.5. If you are reading these notes, stop here and try to do Ex 3 from Lay without reading his solution. Note that you get a general solution of the form (2) as I claimed above.

5 Summary

The procedure here describes what we have learned in this section about writing the solution set of a consistent system $A \mathbf{x}=\mathbf{b}$:

1. Write the augmented matrix and find the RREF;
2. Solve for the basic variables (variables coming from the pivot columns) in terms of the free variables;
3. Write the general solution as a linear combination of vectors with the free variables as parameters.
