
Matrix multiplication and matrix equations
Reading: Lay 1.4

September 4, 2013

Remember that in the last lecture we introduced vectors and linear com-
binations, and showed that the problem of determining whether a vector b
could be written as a linear combination was the same as the problem of
determining whether a particular linear system is consistent.

In this lecture, we introduce the notation of “matrix multiplication” as
a nice way to handle problems like the ones involving linear combinations.
This notation will have added benefits.

1 Multiplying a vector and a matrix

Recall that we say that a matrix is m× n if it has m rows and n columns.

Definition 1.1. Suppose we are given an m × n matrix A and a vector
x ∈ Rn, and suppose

A = [a1 a2 . . . an], x =


x1

x2
...
xn


Then we define the product Ax to be the linear combination

x1a1 + x2a2 + . . . + xnan.

Note:
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• The product Ax is an element of Rm;

• The product is only defined when x has the same number of entries as
the number of columns of A.

This definition is easy to remember with practice. We will work an ex-
ample, which hopefully will convince you that these calculations are not so
complicated.

Example 1.2. If

A =


3 6 9
1 0 2
−1 0 0
0 0 1

 and x =

 1
−2
10

 ,

then

Ax = 1


3
1
−1
0

− 2


6
0
0
0

+ 10


9
2
0
1

 =


81
21
−1
10

 .

The next example will introduce the main point of this lecture.

Example 1.3. Suppose we have vectors

u =

 3
1
−1

 ; v =

1
0
0

 ; w =

−2
−2
−2

 .

We want to determine whether we can write the vector

b =

0
0
0


as a linear combination of u,v, and w. But rather than actually solving this
problem (you have seen examples of this already), we just want to express
the problem in the fancy new notation we have just made. So the question
is whether there exist coefficients x1, x2, x3 such that

x1u + x2v + x3w = b.
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In the notation that we just introduced above, this is the same as asking
whether there is a vector x in R3 such that

Ax = b,

where

A =

 3 1 −2
1 0 −2
−1 0 −2

 .

2 Matrix equations

The last example shows that problems like “what possible ways can we write
a vector b as a linear combination of vectors v1, . . . ,vp” can be written
using matrix multiplication notation as questions of the form “what vectors
x solve the matrix equation [v1 v2 . . .vp]x = b?” We will write this a little
more formally in the following theorem.

Theorem 2.1 (compare Lay 1.4, Theorem 2). If A is an m× n matrix with
columns a1, . . . , an, and if b ∈ Rm, the matrix equation

Ax = b

(where the vector x ∈ Rn is our variable) has the same solution set as the
vector equation

x1a1 + . . . + xnan = b,

which has the same solution set as the linear system with augmented matrix

[a1 a2 . . . an b] . (1)

This theorem will be very useful. A lot of “natural” applied problems can
be stated in terms of matrix equations like Ax = b. The fact that we can
use tools such as the RREF on these problems makes their solution much
easier in many cases.

3 Applying Theorem 2.1

The definition of the product Ax and the discussion we have had so far show
that
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• The matrix equation Ax = b has a solution if and only if b is a linear
combination of the columns of A.

That is, if A = [a1 . . . an], the matrix equation Ax = b has a solution if
and only if b is in span{a1, . . . , an}. We have already seen how to determine
whether some fixed vector b is in the span, using the augmented matrix (1).
A harder question is to ask for a description of all possible b which can be
written as a linear combination of a1, . . . an–this is the same as asking to
solve for the entire span of the set {a1, . . . , an}.

We are first going to ask a simpler version of this question: how can we
tell when span{a1, . . . , an} = Rm?

Definition 3.1. We say a set of vectors {v1, . . . ,vp} spans Rm if every
vector in Rm can be written as a linear combination of v1, . . . ,vp. That is,
we say {v1, . . . ,vp} spans Rm if

span{v1, . . . ,vp} = Rm.

The following example is somewhat on the “easy” side because I will be
running short on time in lecture. There is a more complicated one in the
book (Lay 1.4, Example 3) which I encourage you to read.

Example 3.2. Let

A =

[
2 3
4 6

]
.

Do the columns of A span R2? That is, is

span

{[
2
4

]
,

[
3
6

]}
equal to R2?

A vector b is in this span if and only if it has the form

b = c1

[
2
4

]
+ c2

[
3
6

]
= (2c1 + 3c2)

[
1
2

]
.

That is, every vector in the span is a multiple of the single vector

[
1
2

]
. From

drawing pictures in R2, we can see that this is all vectors that lie along a
particular line–not all of R2. So the answer is no; the columns do not span
R2.
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Theorem 3.3. Let A be an m×n matrix. The following statements are log-
ically equivalent. That is, A satisfies a single one of the following statements
if and only if it satisfies all three, and if there is one statement which A does
not satisfy, then it does not satisfy any of them.

• For each b ∈ Rm, the equation Ax = b has a solution;

• Each b in Rm is a linear combination of the columns of A;

• The columns of A span Rm;

• A has a pivot position in each row.

You should think about why the first three statements are equivalent.
These three are equivalent by the definitions of matrix multiplication and by
the definition of the word “spans”–they are essentially different ways to say
the same thing.

The fourth statement is stranger. Imagine if

A = [a1 a2 . . . an]

and we want to see whether these columns span Rm–that is, whether every
x can be written as a linear combination of the vectors a1, . . . , an. You could
determine this by writing down the RREF of the augmented matrices

B = [a1 a2 . . . an,x]

for every possible choice of x ∈ Rm, and making sure that these are the
matrices of consistent linear systems. Of course this would be impossible,
since there are infinitely many choice of x.

However, if we are computing the RREF of

B = [a1 a2 . . . an,x]

for some x, we know that it will be the augmented matrix of a consistent
linear system if and only if the last column is not a pivot column. This
will be true if every row of A has a pivot position (then we will run out
of possible pivot positions before we get to the last column). The theorem
says that if every row of A does not have a pivot position, then the opposite
happens–there is some vector x such that we can force the above augmented
matrix to have the last column as its pivot column, and so x does not lie in
span{a1, . . . , an}.
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4 Row-vector rule for computing Ax

Lay has a short bit about “the easy way” to compute matrix products, which
might be helpful to you. I’ll talk about it a bit in class but not discuss it in
these notes (Lay’s description is not so bad).

5 Properties of Matrix-Vector products.

In this section, we briefly discuss two properties of the product Ax which are
sometimes useful for computing.

Theorem 5.1. Let A be an m× n matrix, let u,v be vectors in Rn, and let
c be a scalar. Then

• A(u + v) = Au + Av;

• A(cu) = c(Au).

The facts in this theorem are easy to prove. We prove the first one here.
Let

u =


u1

u2
...
un

 , v =


v1
v2
...
vn

 , and A = [a1, . . . , an].

Then, by the definition of the product of a matrix and a vector, we have

Au = u1a1 + . . . + unan, and Av = v1a1 + . . . + vnan. (2)

On the other hand,

u + v =

u1 + v1
...

un + vn

 .

So, using the definition of the product A(u + v) and rearranging terms gives

A(u + v) = (u1 + v1)a1 + . . . + (un + vn)an

= (u1a1 + . . . + unan) + (v1a1 + . . . + vnan) . (3)

Comparing (2) with (3) completes the proof.
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