Determinants, Part One

Oct. 7, 2013

Consider the matrix

$$
A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Remember that before we defined a number called the determinant of A :

$$
\operatorname{det} A=a d-b c
$$

with a special property: whenever $\operatorname{det} A \neq 0$, we were guaranteed A was invertible, and in fact had the explicit formula

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \tag{1}\\
-c & a .
\end{array}\right]
$$

If you don't believe (1), it is easy to convince yourself; just compute the matrix products $A A^{-1}$ and $A^{-1} A$ using the above formula for A^{-1}, and you will see that both products give the identity matrix I_{2}.

Today we will define the determinant for $n \times n$ matrices. Our goal is to define det so that the following property holds for all square matrices A :

- A is invertible if and only if $\operatorname{det} A \neq 0$.

This lecture is going to be devoted to just engineering a definition of determinant, based on the one we have for 2×2 matrices, such that it is at least plausible that the above property holds. Next time, we will explore more closely the relationship to invertibility.

1 Definition of Determinant: 3×3

Let's start by looking at an invertible 3×3 matrix A :

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .
$$

We need to remember two important properties of invertible matrices in what follows:

1. If an $n \times n$ matrix B is invertible, it has n pivot positions (in particular, it has no columns or rows which are all zero);
2. If B is invertible, any matrix we get by performing row operations on B is still invertible (since we don't change the number of pivots).

Since the first column of A is not the zero column, it has a nonzero entry; we might as well assume that $a_{11} \neq 0$ (we can always do a row interchange to make this true). Let's perform some row operations on A : first multiply rows 2 and 3 by a_{11} to get the matrix

$$
A^{\prime}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{11} a_{21} & a_{11} a_{22} & a_{11} a_{23} \\
a_{11} a_{31} & a_{11} a_{32} & a_{11} a_{33}
\end{array}\right],
$$

then add $-a_{21}$ times row 1 to row 2 , and $-a_{31}$ times row 1 to row 3 , to get

$$
A^{\prime \prime}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{13} a_{31}
\end{array}\right] .
$$

Now, $A^{\prime \prime}$ is still invertible by our "two properties", so it has a pivot position in the second column; since a_{11} is already a pivot, this pivot position has to lie in either the second or third rows. This means that either the $(2,2)$ entry or the $(3,2)$ entry of $A^{\prime \prime}$ is nonzero; we might as well assume that $A_{22}^{\prime \prime} \neq 0$ (otherwise we could just interchange rows).

So we do to $A^{\prime \prime}$ something similar to what we did in the beginning to A. We multiply row 3 of $A^{\prime \prime}$ by the (nonzero!) number $a_{11} a_{22}-a_{12} a_{21}$, then we add the appropriate multiple of row 2 to row 3 to clear out the second entry
of row 3 (the "appropriate multiple") here is $a_{11} a_{32}-a_{12} a_{31}$. Rather than work this calculation, we just show the result:

$$
A^{\prime \prime \prime}=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & 0 & a_{11} \Delta
\end{array}\right]
$$

where
$\Delta=\left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}\right)-\left(a_{12} a_{21} a_{33}-a_{12} a_{23} a_{31}\right)+\left(a_{13} a_{21} a_{32}-a_{13} a_{22} a_{31}\right)$.
Note that $A^{\prime \prime \prime}$ is invertible (because A is), so $\Delta \neq 0$.
We will define $\operatorname{det} A$ to be the number Δ above. This gives us a definition of det for 3×3 matrices, and we see that $\operatorname{det} A \neq 0$ when A is invertible. We will soon see that the converse holds; that is, if $\operatorname{det} A \neq 0$, then A is invertible. First, we will cast Δ in a more illuminating form which will help us guess a generalization to bigger matrices. Consider the 2×2 submatrix of A obtained by deleting the first row and column of A; we denote this submatrix by A_{11} :

$$
A_{11}=\left[\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right]
$$

Then $\operatorname{det} A_{11}=a_{22} a_{33}-a_{32} a_{23}$. So the first term of Δ above is actually equal to $a_{11} \operatorname{det} A_{11}$.

Similarly, if we let A_{12} denote the submatrix of A obtained by deleting the first row and second column of A, and we let A_{13} be defined similarly, we have

$$
\begin{equation*}
\operatorname{det} A=\Delta=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+a_{13} \operatorname{det} A_{13} . \tag{2}
\end{equation*}
$$

2 Determinants for general matrices

Our philosophy for defining determinants will be inspired by the form (2). We will give a "recursive" definition: the determinants of 3×3 matrices are defined using determinants for 2×2 matrices as in (2); the determinants of 4×4 matrices are defined using determinants of 3×3 matrices; etc.

This definition will actually also encompass our previous definition for det of a 2×2 matrix, as long as we set $\operatorname{det}[a]=a$ for a 1×1 matrix.
Definition 2.1. Let $A=\left[a_{i j}\right]$ be an $n \times n$ matrix (this notation just means that we will denote the entry which lies in the i th row and j th column of A
by $a_{i j}$). If $n=1$, we define $\operatorname{det} A=a_{11}$, the only entry of A. Otherwise, we set

$$
\begin{aligned}
\operatorname{det} A & =a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\ldots+(-1)^{1+n} a_{1 n} \operatorname{det} A_{1 n} \\
& =\sum_{j=1}^{n}(-1)^{1+j} a_{1 j} \operatorname{det} A_{1 j} .
\end{aligned}
$$

Example 2.2. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
0 & 0 & 4
\end{array}\right]
$$

Then we have

$$
\begin{aligned}
\operatorname{det} A & =1 \cdot \operatorname{det}\left[\begin{array}{ll}
4 & 6 \\
0 & 4
\end{array}\right]-2 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 6 \\
0 & 4
\end{array}\right]+3 \cdot \operatorname{det}\left[\begin{array}{ll}
2 & 4 \\
0 & 0
\end{array}\right] \\
& =1 \cdot 16-2 \cdot 8+3 \cdot 0=0
\end{aligned}
$$

Example 2.3. Let

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 3 & 0 \\
0 & 3 & 1
\end{array}\right]
$$

Then

$$
\begin{aligned}
\operatorname{det} A & =1 \cdot \operatorname{det}\left[\begin{array}{ll}
3 & 0 \\
3 & 1
\end{array}\right]-1 \cdot \operatorname{det}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+1 \cdot \operatorname{det}\left[\begin{array}{ll}
0 & 3 \\
0 & 3
\end{array}\right] \\
& =1 \cdot 16-2 \cdot 8+3 \cdot 0=0 .
\end{aligned}
$$

3 Cofactor expansion

Computing determinants of matrices bigger than 3×3 using the definition rapidly gets horrible. A number of theorems and techniques exist to make computing determinants of bigger matrices more palatable. The first we will see is "cofactor expansion".
Definition 3.1. Let A be an $n \times n$ matrix. Analogous to before, define $A_{i j}$ to be the submatrix of A produced by deleting the $i t h$ row and j th column of A. Then the (i, j) cofactor of A, denoted by $C_{i j}$, is defined by

$$
C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j} .
$$

Definition 3.1 gives us another way to rewrite the definition of a determinant:

$$
\operatorname{det} A=\sum_{j=1}^{n} a_{1 j} C_{1 j} .
$$

This notation is suggestive, and might lead you to believe that the determinant could be computed using the cofactors $C_{i j}$ instead, where $i \neq 1$. In fact, this is true and more. We could have performed what is called a cofactor expansion using any row or column of the matrix, as we see in the following theorem:

Theorem 3.2. Let A be an $n \times n$ matrix. Then $\operatorname{det} A$ can be computed using cofactor expansion along any row of the matrix. The cofactor expansion along the ith row is given by

$$
\operatorname{det} A=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots a_{i n} C_{i n}
$$

On the other hand, we could also compute using cofactor expansion along any column of the matrix. The cofactor expansion along the j th column is given by

$$
\operatorname{det} A=a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\ldots+a_{n j} C_{n j} .
$$

Justifying this theorem is somewhat complicated, so we will just take it for granted without proof.

The cofactor expansion is quite useful for computing determinants in the case that a given row or column has a lot of zero entries.

Example 3.3. Compute $\operatorname{det} A$ if

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
4 & 5 & 6 & 1 \\
2 & 2 & 2 & 2 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Performing cofactor expansion along the bottom row, we see

$$
\begin{aligned}
\operatorname{det} A= & 0 \cdot \operatorname{det}\left[\begin{array}{lll}
2 & 3 & 1 \\
5 & 6 & 1 \\
2 & 2 & 2
\end{array}\right]-0 \cdot \operatorname{det}\left[\begin{array}{lll}
1 & 3 & 1 \\
4 & 6 & 1 \\
2 & 2 & 2
\end{array}\right]+0 \cdot \operatorname{det}\left[\begin{array}{lll}
1 & 2 & 1 \\
4 & 5 & 1 \\
2 & 2 & 2
\end{array}\right] \\
& +1 \cdot \operatorname{det}\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
2 & 2 & 2
\end{array}\right] \\
= & 0+0+0+1 \cdot\left(1 \operatorname{det}\left[\begin{array}{ll}
5 & 6 \\
2 & 2
\end{array}\right]-2 \operatorname{det}\left[\begin{array}{ll}
4 & 6 \\
2 & 2
\end{array}\right]+3\left[\begin{array}{ll}
4 & 5 \\
2 & 2
\end{array}\right]\right) \\
= & -2-2(-4)+3(-2)=0 .
\end{aligned}
$$

We finish up today by showing a nice way to compute the determinants of upper or lower triangular matrices.

Example 3.4. Using cofactor expansion on the first column of the following 3×3 matrix,

$$
\begin{aligned}
\operatorname{det}\left[\begin{array}{lll}
3 & 3 & 3 \\
0 & 2 & 1 \\
0 & 0 & 4
\end{array}\right] & =3 \cdot \operatorname{det}\left[\begin{array}{cc}
2 & 1 \\
0 & 4
\end{array}\right] \\
& =3 \cdot 2 \cdot \operatorname{det}[4]=3 \cdot 2 \cdot 4=24
\end{aligned}
$$

The same technique works on any upper or lower triangular matrix.
Theorem 3.5. If A is upper or lower triangular, then $\operatorname{det} A$ is equal to the product of the entries on the main diagonal of A.

This theorem will be the basis of a simpler method of computing determinants than the ones we have seen so far; we will discuss this in a future lecture.

