We will define an object called a vector space. This is a set of objects, called vectors, which have many of the same properties as vectors in \mathbb{R}^{n}. This will allow us to generalize the ideas that have been so successful for \mathbb{R}^{n} and to better describe the solution sets of linear systems.

1 Definitions and Properties

Definition 1.1. A vector space is a nonempty set V whose elements are called vectors, and on which are defined two operations, called "addition" and "scalar multiplication" (multiplication by real numbers), which satisfy the properties below for all vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ and all scalars c, d :

1. The sum of \mathbf{u} and \mathbf{v}, denoted $\mathbf{u}+\mathbf{v}$, is in V;
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$;
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$;
4. There is a zero vector $\mathbf{0}$ such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$ (note: for every \mathbf{u});
5. For each $\mathbf{u} \in V$, there is a vector denoted by $-\mathbf{u}$ such that $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$ (note: a different $\mathbf{- u}$ for each \mathbf{u} ! Also note that we do not know yet that $(-1) \mathbf{u}=-\mathbf{u}$, though this will turn out to be true).
6. The scalar multiple of \mathbf{u} by c, denoted $c \mathbf{u}$, is in V;
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$;
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$;
9. $c(d \mathbf{u})=(c d) \mathbf{u}$;
10. $1 \mathbf{u}=\mathbf{u}$.

A couple properties that follow more or less immediately from the definition above:

Proposition 1.2. There is only one zero vector in V. Also, for each \mathbf{u}, the vector $\mathbf{-} \mathbf{u}$ is unique. Moreover, for each $\mathbf{u} \in V$ and each scalar c;

$$
\begin{aligned}
0 \mathbf{u} & =\mathbf{0} \\
c \mathbf{0} & =\mathbf{0} \\
-\mathbf{u} & =(-1) \mathbf{u}
\end{aligned}
$$

The first thing to notice is that \mathbb{R}^{n} meets the criteria of the definition. The definition is an attempt at distilling the properties of \mathbb{R}^{n} that are important for what we care about. When in doubt about whether something is true for vector spaces, keep \mathbb{R}^{n} in mind. There are a few things that are true for \mathbb{R}^{n} that are not true in other vector spaces, but not so many.

Example 1.3. Let \mathbb{P}_{n} denote the set of polynomials of degree at most n. The typical element of \mathbb{P}_{n} looks like

$$
a_{0}+a_{1} t+\ldots+a_{n} t^{n}
$$

where a_{i} is a real number for each i. Scalar multiplication and addition work in the obvious ways:

$$
\begin{gathered}
c\left(a_{0}+a_{1} t+\ldots+a_{n} t^{n}\right)=c a_{0}+c a_{1} t+\ldots+c a_{n} t^{n} \\
a_{0}+a_{1} t+\ldots+a_{n} t^{n}+b_{0}+b_{1} t+\ldots+b_{n} t^{n}=\left(a_{0}+b_{0}\right)+\ldots+\left(a_{n}+b_{n}\right) t^{n}
\end{gathered}
$$

Since addition and scalar multiplication of polynomials produces polynomials of the same degree, \mathbb{P}_{n} satisfies axioms 1 and 6 in the definition of a vector space. Similarly, axioms 2 and 3 hold by properties of addition of real numbers, and axiom 4 holds with $\mathbf{0}=0$, the polynomial with all coefficients 0 . The remaining properties are also easy to verify, but we will not do this here. You should convince yourself that they hold.

Example 1.4. Let $\mathbb{C}(\mathbb{R})$ be the set of all continuous functions with domain \mathbb{R} (we could consider other domains). A vector in this space is a continuous function on the reals. Addition and scalar multiplication are defined in the usual way for continuous functions. For instance,

$$
c(\sin x)=c \sin x
$$

You learned in Calculus class that the sum of two continuous functions is continuous, and so is the product of continuous functions. So Axioms 1 and 6 hold. Again, the other axioms hold by properties of the real numbers. For instance, if f, g, h are continuous functions, then

$$
f+(g+h)=(f+g)+h
$$

since what this means is that $f(x)+(g(x)+h(x))=(f(x)+g(x))+h(x)$ for all x, and this holds because $f(x), g(x), h(x)$ are just real numbers.

Example 1.5. Let \mathbb{R}^{∞} denote the set of all real-valued sequences with only finitely many nonzero elements. That is, a typical element of \mathbb{R}^{∞} is an infinite sequence

$$
\left(a_{1}, a_{2}, a_{3}, \ldots\right)
$$

with the property that there is some K such that $a_{k}=0$ whenever $k \geq K$. Scalar multiplication is defined by

$$
c\left(a_{1}, a_{2}, a_{3}, \ldots\right)=\left(c a_{1}, c a_{2}, c a_{3}, \ldots\right)
$$

and addition by

$$
\left(a_{1}, a_{2}, a_{3}, \ldots\right)+\left(b_{1}, b_{2}, b_{3}, \ldots\right)=\left(a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, \ldots\right)
$$

Note that in both of these operations, the resulting vector still has only finitely many nonzero entries. So axioms 1 and 6 hold. The others hold by similar observations to the other two examples (check this).

2 Subspaces

Many subsets of a vector space V are vector spaces themselves. We want to define a subspace to be a vector space which is part of a larger vector space. Rather than going through all the work of checking that a subset is a vector space, though, it turns out that we only need to check a few things. Once we know these, then the rest of the vector space axioms hold via inheritance from the larger space V.

Definition 2.1. A subspace H of a vector space V is a subset of V with the properties:

1. $\mathbf{0} \in H$;
2. H is closed under vector addition-that is, $\mathbf{u}+\mathbf{v}$ is in H whenever \mathbf{u} and \mathbf{v} both are;
3. H is closed under multiplication by scalars. That is, for any number c, $c \mathbf{u}$ is in H whenever \mathbf{u} is.

As long as H has the three properties of the above definition, then H is itself a vector space. This is not complicated to show (think about why)basically, all the properties of addition and scalar multiplication from V carry over to H. Note that by our definition, V is a subspace of itself.

In the following examples, I will not prove that each H is a subspace. This is straightforward, but make sure you know how to do it; I'll talk about it a bit in class.

Example 2.2. Let V be any vector space. Then the set $H=\{\mathbf{0}\}$ is a subspace, called the "zero subspace". In a sense, it is the smallest possible subspace of V.

Example 2.3. Let $V=\mathbb{R}^{3}$ and H denote the set of all vectors in V with zero in their middle entry:

$$
H=\left\{\left[\begin{array}{c}
a_{1} \\
0 \\
a_{3}
\end{array}\right]: \quad a_{1} \in \mathbb{R}, a_{3} \in \mathbb{R}\right\}
$$

Then H is a subspace of V.
Example 2.4. Let $V=\mathbb{P}_{4}$, the set of polynomials of degree at most 4, and let $H=\left\{a x^{2}: \quad a \in \mathbb{R}\right\}$ (that is, the set of all multiples of x^{2}). Then H is a subspace of V.

Here is an example of a set that is not a subspace:
Example 2.5. Let $V=\mathbb{R}^{2}$, and let $H=\left\{\mathbf{x} \in \mathbb{R}^{2}: x_{1}+x_{2}=1\right\}$ (here we denote the components of \mathbf{x} by x_{1} and x_{2} as usual). This is not a subspace because it does not contain the zero vector.

2.1 Subspaces as spans

We define linear combinations for general vector spaces analogously to those in \mathbb{R}^{n}. That is, if $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\} \subseteq V$ is some set of vectors, then any vector of the form

$$
a_{1} \mathbf{v}_{1}+\ldots+a_{p} \mathbf{v}_{p}
$$

is said to be a linear combination of the vectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$.
Similarly, if S is a set of vectors, then $\operatorname{span} S$ is the set of all linear combinations of the vectors in S.

Example 2.6. Let V be a vector space, and let $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ consist of two vectors of S. Let $H=\operatorname{span} S$. Then H is a subspace. We verify the axioms for a subspace.

$$
\mathbf{0}=0 \mathbf{v}_{1}+0 \mathbf{v}_{2},
$$

so $\mathbf{0} \in H$. Also, if $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ is in H , then so is

$$
c\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}\right)=c a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}
$$

Finally, if $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}$ and $b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}$ are two elements of H, then so is

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}=\left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\left(a_{2}+b_{2}\right) \mathbf{v}_{2} .
$$

In fact, the above example generalizes to arbitrary sets of vectors without much adaptation:

Theorem 2.7. If $\mathbf{v}_{1}, \ldots \mathbf{v}_{p}$ are vectors in a vector space V, then span $\left\{\mathbf{v}_{1}, \ldots \mathbf{v}_{p}\right\}$ is a subspace of V.

Example 2.8. Let $V=\mathbb{R}^{3}$, and let H be the set of all vectors of the form $(0, a+b, b)$ for any real numbers a, b. An arbitrary vector of H has the form

$$
\left[\begin{array}{c}
0 \\
a+b \\
b
\end{array}\right]=a\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]+b\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

That is,

$$
H=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]\right\} .
$$

Since H is the span of a set of vectors in V, it is a subspace of V.

