Practice Exam Solutions

Note: most of the problems have many equally valid solutions!

Problem 1

(a) True. This is the rank theorem.
(b) False. We have spent a lot of time talking about how many matrices are not diagonalizable. One example is

$$
A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]
$$

(c) False. A regular stochastic matrix P is allowed to have 0 in some entries, as long as P^{k} does not have 0 entries for some k.
(d) False. An orthogonal matrix U satisfies $U^{T}=U^{-1}$. This does not imply that $U^{\top}=U$. One example appears in the "orthogonal diagonalization" problem at the end of these problems.
(e) True. $B^{-1} A^{-1} A B=B^{-1} B=I$.

Problem 2

Write the augmented matrix of the system:

$$
\left[\begin{array}{ccc}
1 & h & 1 \\
3 & 12 & 1
\end{array}\right]
$$

One step of row reduction gives

$$
\left[\begin{array}{ccc}
1 & h & 1 \\
0 & 12-3 h & -2
\end{array}\right] .
$$

Clearly this will be the matrix of a consistent system if and only if $h \neq 4$. So the system has no solution for the value $h=4$.
(a) What the problem is really asking is for the matrix of T with respect to the standard basis $\mathcal{E}=\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$. Now,

$$
T\left(\mathbf{e}_{1}\right)=\left[\begin{array}{l}
2 \\
0
\end{array}\right], \quad T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{c}
-3 \\
4
\end{array}\right]
$$

Therefore,

$$
A=\left[\begin{array}{cc}
2 & -3 \\
0 & 4
\end{array}\right]
$$

is the right choice.
(b) With some practice, you can simply read off the matrix entries from the polynomial. But if you are uncomfortable with this, let's take the long way. Set

$$
B=\left[\begin{array}{ll}
a & b \\
b & c
\end{array}\right]
$$

Then $\mathbf{x}^{T} B \mathbf{x}=a x_{1}^{2}+2 b x_{1} x_{2}+c x_{2}^{2}$. Matching coefficients with Q in the problem gives $a=2, b=3, c=2$. So

$$
B=\left[\begin{array}{ll}
2 & 3 \\
3 & 2
\end{array}\right]
$$

Problem 4

This is just a matter of solving the normal equations $A^{T} A \hat{\mathbf{x}}=A^{T} \mathbf{b}$. We calculate

$$
A^{T} A=\left[\begin{array}{cc}
3 & 9 \\
9 & 35
\end{array}\right], \quad A^{T} \mathbf{b}=\left[\begin{array}{c}
16 \\
64
\end{array}\right] .
$$

Row reduction on augmented matrix $\left[\begin{array}{ll}A^{T} A & A^{T} \mathbf{b}\end{array}\right]$ gives

$$
\left[\begin{array}{ccc}
1 & 0 & -2 / 3 \\
0 & 1 & 2
\end{array}\right]
$$

or

$$
\hat{\mathbf{x}}=\left[\begin{array}{c}
-2 / 3 \\
2
\end{array}\right]
$$

Problem 5

Note that
$\operatorname{det}(A)=1, \quad \operatorname{det}(B)=a d-b c, \quad \operatorname{det}(A+B)=(1+a)(1+d)-b c$.
In particular, $\operatorname{det}(A+B)=a d+a+d+1-b c$, and $\operatorname{det}(A)+\operatorname{det}(B)=1+a d-b c$. These two expressions are equal if and only if $a+d=0$.

Problem 6

First let's find an orthogonal basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$, then normalize. Start with $\mathbf{u}_{1}=\mathbf{v}_{1}$.

$$
\mathbf{u}_{2}=\mathbf{v}_{2}-\frac{\mathbf{v}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
2 \\
0
\end{array}\right]-\frac{4}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
1 \\
-1
\end{array}\right] .
$$

Similarly, $\quad \mathbf{u}_{3}=\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{c}-1 / 4 \\ -1 / 4 \\ 1 / 4 \\ 1 / 4\end{array}\right]$.

Problem 6

Now,

$$
\left\|\mathbf{u}_{1}\right\|=2 ; \quad\left\|\mathbf{u}_{2}\right\|=\sqrt{2} ; \quad\left\|\mathbf{u}_{3}\right\|=1 / 2
$$

So an orthonormal basis is

$$
\left\{\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right],\left[\begin{array}{c}
-1 / 2 \\
-1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]\right\}
$$

$$
\begin{gathered}
\mathbf{x}_{1}=\left[\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] . \\
\mathbf{x}_{2}=\left[\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right]\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]=\left[\begin{array}{l}
5 / 12 \\
7 / 12
\end{array}\right] .
\end{gathered}
$$

Problem 7

To find \mathbf{q}, write $P \mathbf{q}=\mathbf{q} \Longrightarrow(P-I) \mathbf{q}=\mathbf{0}$. We solve the system whose augmented matrix is

$$
\left[\begin{array}{ccc}
-1 / 2 & 1 / 3 & 0 \\
1 / 2 & -1 / 3 & 0
\end{array}\right]
$$

Clearly this is solved by

$$
c\left[\begin{array}{c}
2 / 3 \\
1
\end{array}\right]
$$

Normalizing to get the sum of entries 1 gives

$$
\mathbf{q}=\left[\begin{array}{l}
2 / 5 \\
3 / 5
\end{array}\right]
$$

Problem 8

Let's use the equation $A A^{-1}=I$ with our formulas for A and A^{-1} :

$$
\begin{aligned}
I_{n} & =\left(I_{n}+\mathbf{v}^{T}\right)\left(I_{n}+\alpha \mathbf{v} \mathbf{v}^{T}\right) \\
& =I_{n}+\mathbf{\mathbf { v } ^ { T }}+\alpha \mathbf{v} \mathbf{v}^{T}+\alpha \mathbf{v v}^{T} \mathbf{v v}^{T} \\
& =I_{n}+\left(1+\alpha+\alpha\|\mathbf{v}\|^{2}\right) \mathbf{v} \mathbf{v}^{T} \\
\Longrightarrow 0_{n} & =\mathbf{v} \mathbf{v}^{T}\left[1+\alpha\left(1+\|v\|^{2}\right)\right],
\end{aligned}
$$

where 0_{n} is the $n \times n$ zero matrix. Now, $\mathbf{v v}^{T}$ is not the zero matrix, so this implies that the sum of numbers is square brackets is zero, or equivalently

$$
\alpha=\frac{-1}{1+\|v\|^{2}} .
$$

It would have been ok to leave $\|\mathbf{v}\|^{2}$ as $\mathbf{v}^{T} \mathbf{v}$.

Problem 9

To find a basis for $\operatorname{col} A$, we look for pivot columns. Adding -2 times row 1 to row 3 gives

$$
\left[\begin{array}{ccccc}
1 & 3 & -2 & 1 & -5 \\
0 & 0 & -1 & 2 & 2 \\
0 & 0 & -1 & 2 & 2
\end{array}\right]
$$

taking the row reduction one step further gives

$$
\left[\begin{array}{ccccc}
1 & 3 & -2 & 1 & -5 \\
0 & 0 & -1 & 2 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

We see the first and third columns of A are pivot columns.

Problem 9

So a basis for $\operatorname{col} A$ is

$$
\left\{\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right],\left[\begin{array}{l}
-2 \\
-1 \\
-5
\end{array}\right]\right\}
$$

A basis for row A is provided by

$$
(1,3,-2,1,-5), \quad(0,0,-1,2,2)
$$

To find a basis for nul A, we have to finish row reduction. Actually, we want to row reduce matrix augmented by $\mathbf{0}$, but the zero column remains unchanged under row operations, so we can use our work so far.

Problem 9

Finishing row reduction of augmented matrix:

$$
\left[\begin{array}{cccccc}
1 & 3 & 0 & -3 & -9 & 0 \\
0 & 0 & 1 & -2 & -2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Thus, the null space is all vectors of form

$$
\left\{\left[\begin{array}{c}
-3 x_{2}+3 x_{4}+9 x_{5} \\
x_{2} \\
2 x_{4}+2 x_{5} \\
x_{4} \\
x_{5}
\end{array}\right]: \quad x_{2}, x_{4}, x_{5} \in \mathbb{R}\right\}
$$

Problem 9

So a basis for nul A is

$$
\left\{\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
3 \\
0 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
9 \\
0 \\
2 \\
0 \\
1
\end{array}\right]\right\}
$$

Note that the dimensions of the column space and row space are the same, as expected!

The characteristic polynomial is

$$
(2-\lambda)(2-\lambda)-9=\lambda^{2}-4 \lambda-5=(\lambda-5)(\lambda+1)
$$

So the eigenvalues are $\lambda_{1}=-1$ and $\lambda_{2}=5$. Eigenvectors:

$$
A+I=\left[\begin{array}{ll}
3 & 3 \\
3 & 3
\end{array}\right] \Longrightarrow \mathbf{v}_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]
$$

and

$$
A-5 I=\left[\begin{array}{cc}
-3 & 3 \\
3 & -3
\end{array}\right] \Longrightarrow \mathbf{v}_{2}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

So $A=P D P^{-1}$, where

$$
P=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
-1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right], \quad D=\left[\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right] .
$$

Note that since P is orthogonal, $P^{-1}=P^{T}$.

