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1. Let X1, X2, . . . ∼ Pois(µ), where µ ∈ (0,∞). Then, for k = 0, 1, 2, . . . we have that P (Xi = j) =
e−µµj

j!
.

Show that the MLE of µ is the sample mean.

Solution: We wish to maximize the likelihood function, i.e.,

L(µ) = Lx(µ) = f(x;µ) =

(
e−µµx1

x1!

)(
e−µµx2

x2!

)
· · ·
(
e−µµxn

xn!

)
=

e−nµµ

n∑
i=1

xi

x1!x2! · · ·xn!

Taking the derivative we get:

dL(µ)

dµ
=

d

dµ

 e−nµµ

n∑
i=1

xi

x1!x2! · · ·xn!

 = (x1!x2! · · ·xn!)−1

(
−ne−nµµ

n∑
i=1

xi

+ e−nµµ

n∑
i=1

xi−1
n∑
i=1

xi

)

Setting the derivative equal to zero we get the critical point µ̂ :

dL(µ̂)

dµ̂
= 0 ⇐⇒ (x1!x2! · · ·xn!)−1

(
−ne−nµ̂µ̂

n∑
i=1

xi

+ e−nµ̂µ̂

n∑
i=1

xi−1 n∑
i=1

xi

)
= 0

⇐⇒ ne−nµ̂µ̂

n∑
i=1

xi

= e−nµ̂µ̂

n∑
i=1

xi−1 n∑
i=1

xi

⇐⇒ n = µ̂−1
n∑
i=1

xi

⇐⇒ µ̂ =

(
n∑
i=1

xi

)
/n, i.e., the sample mean

An argument using second derivative shows that this is indeed the MLE.

2. Consider the following data:
Partition J Oj

E1 0 57
E2 1 203
E3 2 383
E4 3 525
E5 4 532
E6 5 408
E7 6 273
E8 7 139
E9 8 45
E10 9 27
E11 10 10
E11 11 4
E11 12 0
E11 13 1
E11 14 1

Where E11 = {j : j ≥ 10}

Test the null hypothesis that the data were drawn from a Poisson distribution, i.e.:

Θ = {θ ∈ R11 : θj ≥ 0,

11∑
j=1

θj = 1}, Θ0 = {θ ∈ Θ : θj =
µje−µ

j!
, j = 1, . . . , 10, µ ∈ (0,∞)}

Compute the MLE of µ
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Solution: The following table summarizes all the data needed to test the given null hypothesis: (n = 2608)

Partition J oj oj/n oj ∗ j θ̄j ēj = θ̄j ∗ n log(oj/ēj)

E1 0 57 0.021855828 0 0.020826083 54.31442488 2.750901199
E2 1 203 0.077837423 203 0.080629203 210.2809617 -7.153429752
E3 2 383 0.146855828 766 0.156079959 407.0565318 -23.33124373
E4 3 525 0.201303681 1575 0.20142374 525.3131137 -0.313020406
E5 4 532 0.20398773 2128 0.194955474 508.4438755 24.09356317
E6 5 408 0.156441718 2040 0.150955937 393.6930837 14.56378199
E7 6 273 0.104677914 1638 0.097405553 254.0336826 19.65734539
E8 7 139 0.053297546 973 0.053872911 140.5005529 -1.492511221
E9 8 45 0.017254601 360 0.026071453 67.99434828 -18.57429443
E10 9 27 0.010352761 243 0.011215212 29.24927295 -2.160481972
E11 10 10 0.006134969 100 0.006564475 17.12015192 -5.376711513
E11 11 4 44
E11 12 0 0 Tn = 2

∑
log(oj/ēj) = 5.327797435

E11 13 1 13
E11 14 1 14∑

oj ∗ j = 10097
µ̂ =

∑
oj ∗ j/2608 = 3.87154908

Where θ̄j are the probabilities under the null hypothesis, i.e.: θ̄j =
e−µ̂µ̂j

j!
, where µ̂ = 3.87154908

Also, θ̄10 = 1−
∑9
i=0 θ̄j and o10/n = (

∑14
i=10 oj)/n

Since dim(Θ) = 11− 1 = 10 and dim(Θ0) = 1, the appropriate degrees of freedoms are 10− 1 = 9.
Assuming a significance level α = 0.05, we would not reject the null hypothesis:

P (χ2(9) ≤ Tn) = P (χ2(9) ≤ 5.327797435) = 0.195151435 > α

8.1 (a) Let X = (X1, . . . , Xn) be a random sample of size n ≥ 3 from the exponential distribution of mean
1/θ. Find a sufficient statistic T (X) for θ and write down its density. Obtain a maximum likelihood
estimator θ̂n based on the sample of size n for θ and show that it is biased, but that a multiple of it is not.

Solution: The density of a single exponential random variable with parameter θ is P (Xi = xi) = θe−θxi .
Let X1, . . . , Xn ∼ Exp(θ). The joint distribution is:

f(X; θ) =

n∏
i=1

θe−θxi = θne
−θ
(

n∑
i=1

xi

)

Then T (X) =
n∑
i=1

xi is a sufficient statistic for θ by the factorization theorem, letting h(x) = θn.

Now, let us find the distribution of T (X). To this end, consider the following facts:
i) If X ∼ Gamma(1, β) then X ∼ Exp(β). In other words Gamma(1, β) = Exp(β)

ii) If X1 ∼ Gamma(α1, β) and X2 ∼ Gamma(α2, β), X1 independet of X2, then

X1 +X2 ∼ Gamma(α1 + α2, β)

It follows from i) and ii) that T (X) ∼ Gamma(n, θ), i.e., f(T (X); θ) =
θntn−1e−θt

Γ(n)

Finally, let us find a maximum likelihood estimator θ̂n based on the sample of size n for θ by solv-
ing the likelihood equation:

d

dθ
l(θ̂) = 0 ⇐⇒ d

dθ
log

(
θ̂ne
−θ̂
(

n∑
i=1

xi

))
= 0 ⇐⇒ d

dθ

(
nlog(θ̂) + log(e

−θ̂
(

n∑
i=1

xi

)
)

)
= 0 ⇐⇒

d

dθ

(
nlog(θ̂)− θ̂

(
n∑
i=1

xi

))
= 0 ⇐⇒ n

θ̂
−

n∑
i=1

xi = 0 ⇐⇒ θ̂ = n/

n∑
i=1

xi ⇐⇒ θ̂ = n/T (X)

This estimator is biased:

Eθ[θ̂] = E [n/T (X)] =

∞∫
0

n

t

θntn−1e−θt

Γ(n)
dt =

∞∫
0

nθ

n− 1

θn−1t(n−1)−1e−θt

Γ(n− 1)
dt =

nθ

n− 1

∞∫
0

θn−1t(n−1)−1e−θt

Γ(n− 1)
dt =

n

n− 1
θ
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Hence, we can correct this estimator to obtain an unbiased estimator, i.e., the estimator
n− 1

n
θ̂ =

n− 1
n∑
i=1

xi

is unbiased for θ. Check: E[
n− 1

n
θ̂] =

n− 1

n
E[θ̂] =

n− 1

n

n

n− 1
θ = θ

(b) Calculate the Cramer-Rao Lower Bound for the variance of an unbiased estimator, and explain why you
would not expect the bound to be attained in this example. Confirm this by calculating the variance of
your unbiased estimator and comment on its behavior as n→∞.

Solution: Let us compute the fisher information i(θ) for our unbiased estimator. First note that

i1(θ) = Eθ[−
d2

dθ2
log(f1(x1; θ))] = Eθ

[
1

θ2

]
, i.e., the fisher information for a single exponential random

variable. Since we have n in pendent i.i.d exponential r.v.s, it follows:

i(θ) = Eθ

[ n
θ2

]
= Eθ

 n(
(n− 1)

T

)2

 =
n

(n− 1)2
Eθ[T

2]

Recall that T ∼ Gamma(n, θ). We can compute its second moment:

E[T 2] =

∞∫
0

t2
θntn−1e−θt

Γ(n)
dt =

∞∫
o

θntn+1e−θt

Γ(n)
dt =

(n+ 1)n

θ2

∞∫
0

θn+2tn+1e−θt

Γ(n+ 2)
dt =

(n+ 1)n

θ2

Hence,

i(θ) =
n

(n− 1)2
(n+ 1)n

θ2
=

n2(n+ 1)

(n− 1)2θ2
=⇒ Cramer-Rao lower bound is

1

i(θ)
=

(n− 1)2

n2(n+ 1)
θ2

Next, let us calculate the variance of the unbiased estimator
n− 1

T
:

V ar

[
n− 1

T

]
= E

[(
n− 1

T

)2
]
− E

[
n− 1

T

]2
= E

[(
n− 1

T

)2
]
− θ2

where,

E

[(
n− 1

T

)2
]

=

∞∫
0

(
n− 1

t

)2
θntn−1e−θt

Γ(n)
dt =

(n− 1)2θ2

(n− 1)(n− 2)

∞∫
0

θn−2t(n−2)−1e−θt

Γ(n− 2)
dt =

n− 1

n− 2
θ2

Hence,

V ar

[
n− 1

T

]
=
n− 1

n− 2
θ2 − θ2 = θ2

[
n− 1

n− 2
− 1

]
=

1

n− 2
θ2

Therefore, the variance of the unbiased estimators approaches 0 as n approaches infinity, which means
that we would not expect the Cramer-Rao Lower Bound to be attained in this example

8.2 You are given a coin, which you are going to test for fairness. Let the probability of a head be p, and consider
testing H0 : p = 1/2 against H1 : p > 1/2.

(i) You toss the coin 12 times and observe nine heads, three tails. Do you rejectH0 in a test of size α = 0.05?

Solution: Let X = number of heads in 12 coin tosses. Then, under H0, X ∼ Bin(12, 1/2).

P (X ≥ 9) =
12∑
i=9

(
12
i

)(1

2

)i(
1

2

)12−i

=

(
1

2

)12 12∑
i=9

(
12
i

)
=

(
1

2

)12 ((
12
9

)
+
(
12
10

)
+
(
12
11

)
+
(
12
12

))
=

1

4096
(220 + 66 + 12 + 1)

=
299

4096

= 0.07299804687

Hence we fail to reject H0 at α = 0.05
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(ii) You toss the coin until you observe the third head, and note that this occurs on the 12th toss. Do you
reject H0 in a test of size α = 0.05?

Solution: Let Y = number of tosses until third head. Then, under H0, Y ∼ NegativeBin(3, 1/2).

P (Y ≥ 9) = 1− P (Y ≤ 8) = 1−
(

8∑
i=0

P (Y = i)

)
= 1−

(
8∑
i=0

(
i+2
i

)(1

2

)i(
1

2

)3
)

1−

(
8∑
i=0

(
i+2
i

)(1

2

)i+3
)

= 1−
(

1

23
+

3

24
+

6

25
+

10

26
+

15

27
+

21

28
+

28

29
+

36

210
+

45

211

)

= 1− 256 + 384 + 384 + 320 + 240 + 168 + 112 + 72 + 45

2048

= 1− 1981

2048

=
67

2048

= 0.032714844

Hence we reject H0 at α = 0.05

Note that even though the data is the same in case (i) and (ii), the classical approach changes with the
experimental setup.

In (i), the number of heads has a binomial distribution, while in (ii) the number of tosses performed has
a negative binomial distribution. What is the likelihood function for p in the two cases? The likelihood
principle would demand that identical inference about p would be drawn in the two cases. Comment.

Solution: The likelihood function for p in the two cases is:

(i) Lx(p) =
(
12
x

)
px(1− p)12−x, for x = 9 we get, L9(p) =

(
12
9

)
p9(1− p)3 = 220p9(1− p)3

(ii) Ly(θ) =
(
y+2
y

)
py(1− p)11−y+1, for y = 9 we get, L9(p) =

(
11
9

)
p9(1− p)3 = 55p9(1− p)3

These two functions are proportional to each other. According to the likelihood principle, identical conclusions
regarding p should be drawn from x and y. For example, if we were to use a likelihood ratio test, then L1/L0

would be the same likelihood ratio function as the following calculations show:

(i) L1(p̂) = f(X; p̂) =
(
12
k

)
p̂k(1 − p̂)12−k, and L0(1/2) = f(X; 1/2) =

(
12
k

)(1

2

)k (
1

2

)12−k

=
(
12
k

)(1

2

)12

.

Thus,

L1/L0 =

(
12
k

)
p̂k(1− p̂)12−k(
12
k

)(1

2

)12 = 212p̂k(1− p̂)12−k

(ii) L1(p̂) = f(Y ; p̂) =
(
k+2
k

)
p̂k(1− p̂)11−k+1 =

(
k+2
k

)
p̂k(1− p̂)12−k, and

L0(1/2) = f(Y ; 1/2) =
(
k+2
k

)(1

2

)k (
1

2

)11−k+1

=
(
k+2
k

)(1

2

)12

.

Thus,

L1/L0 =

(
k+2
k

)
p̂k(1− p̂)12−k(

k+2
k

)(1

2

)12 = 212p̂k(1− p̂)12−k

In either case L1/L0 = 212p̂k(1− p̂)12−k , so inferences using this function will yield the same results as
required by the likelihood principle.
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