S620 - Introduction To Statistical Theory - Homework 4
 Enrique Areyan
 February 13, 2014

(3.1) Let θ be a random variable in $(0, \infty)$ with density

$$
\pi(\theta) \propto \theta^{\gamma-1} e^{-\beta \theta}
$$

where $\beta, \gamma \in(1, \infty)$
(i) Calculate the mean and mode of θ.

Solution: Since θ is proportional to $\theta^{\gamma-1} e^{-\beta \theta}$, we know that $\theta \sim \operatorname{Gamma}(\gamma, \beta)$, where $\beta>1, \gamma>1$. Therefore,

$$
E[\theta]=\frac{\gamma}{\beta}, \text { and Mode }=\frac{\gamma-1}{\beta}
$$

(ii) Suppose that X_{1}, \ldots, X_{n} are random variables, which, conditional on θ are independent and each have the Poisson distribution with parameter θ. Find the form of the posterior density of θ given observed values $X_{1}=x_{1}, \ldots X_{n}=x_{n}$. What is the posterior mean?

Solution: We know that $x \mid \theta \sim \operatorname{Poisson}(\theta)$. Let us compute the posterior distribution:

$$
\begin{array}{rlr}
\theta \mid x & \sim \frac{\pi(\theta) f(x ; \theta)}{\int_{\Theta} \pi\left(\theta^{\prime}\right) f\left(x ; \theta^{\prime}\right) d \theta^{\prime}} & \text { by definition of posterior density } \\
& =\frac{\frac{\theta^{\gamma-1} e^{-\beta \theta}}{e^{-\theta} \theta^{x}}}{\operatorname{constant}} \frac{1}{\operatorname{constant}} & \text { replacing prior and Poisson distribution } \\
& =\text { constant } \times \theta^{\gamma-1+x} e^{-\beta \theta-\theta} & \text { grouping like terms } \\
& =\operatorname{constant} \times \theta^{(\gamma+x)-1} e^{-(\beta+1) \theta} & \\
& \sim \operatorname{Gamma}(\gamma+x, \beta+1), & \text { by definition of Gamma distribution }
\end{array}
$$

Therefore, the posterior mean is the mean of the gamma distribution with parameters $\gamma+x$ and $\beta+1$, i.e.,

$$
E[\theta \mid x]=\frac{\gamma+x}{\beta+1}
$$

Note that $\gamma>1$ and $x=0,1,2, \cdots$, so $\gamma+x>0$ and $\beta>1$ thus $\beta+1>0$.
(ii) Suppose now that T_{1}, \ldots, T_{n} are random variables, which, conditional on θ are independent, each exponentially distributed with parameter θ. What is the mode of the posterior distribution of θ, given $T_{1}=t_{1}, \ldots, T_{n}=t_{n}$?

Solution: In this case we know that $x \mid \theta \sim \operatorname{Exp}(\theta)$. The posterior distribution is:

$$
\begin{array}{rlr}
\theta \mid x & \sim \frac{\pi(\theta) f(x ; \theta)}{\int_{\Theta} \pi\left(\theta^{\prime}\right) f\left(x ; \theta^{\prime}\right) d \theta^{\prime}} & \text { by definition of posterior density } \\
& =\frac{\theta^{\gamma-1} e^{-\beta \theta}}{\text { constant }} \theta e^{-\theta t} & \\
& =\operatorname{constant} & \text { replacing prior and Exp. distribution } \\
& =\operatorname{constant} \times \theta^{\gamma} e^{-(\beta+t) \theta} & \\
& \sim \operatorname{camma}(\gamma+1, \beta+t), & \\
\text { grouping like terms } \\
& \sim \text { by definition of Gamma distribution }
\end{array}
$$

Since $\gamma>1$ then $\gamma+1>0$, and we have a close form for the mode:

$$
\text { Mode }=\frac{(\gamma+1)-1}{\beta+t}=\frac{\gamma}{\beta+t}
$$

(3.3) Find the form of the Bayes rule in an estimation problem with loss function

$$
L(\theta, d)= \begin{cases}a(\theta-d) & \text { if } d \leq \theta \\ b(d-\theta) & \text { if } d>\theta\end{cases}
$$

where a and b are given positive constants.

Solution:

We wish to minimize the following expression:

$$
\int_{\Theta} L(\theta, d) \pi(\theta \mid x) d \theta=\int_{d}^{\infty} a(\theta-d) \pi(\theta \mid x) d \theta+\int_{-\infty}^{d} b(d-\theta) \pi(\theta \mid x) d \theta
$$

As a function of d, i.e., let $f(d)$ be defined as follow:

$$
\begin{aligned}
f(d) & =\int_{d}^{\infty} a(\theta-d) \pi(\theta \mid x) d \theta+\int_{-\infty}^{d} b(d-\theta) \pi(\theta \mid x) d \theta \\
& =a\left[\int_{d}^{\infty} \theta \pi(\theta \mid x) d \theta-d \int_{d}^{\infty} \pi(\theta \mid x) d \theta\right]+b\left[d \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-\int_{-\infty}^{d} \theta \pi(\theta \mid x) d \theta\right] \\
& =d\left[b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta\right]+a \int_{d}^{\infty} \theta \pi(\theta \mid x) d \theta-b \int_{-\infty}^{d} \theta \pi(\theta \mid x) d \theta
\end{aligned}
$$

Find $\frac{d f}{d(d)}$ (derivative of f with respect to d) using product rule and fundamental theorem of calculus:

$$
\begin{aligned}
\frac{d f}{d(d)} & =\left(b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta\right)+d[b \pi(d \mid x)+a \pi(d \mid x)]-a d \pi(d \mid x)-b d \pi(d \mid x) \\
& =b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta+d(a+b) \pi(d \mid x)-d(a+b) \pi(d \mid x) \\
& =b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta
\end{aligned}
$$

Set $\frac{d f}{d(d)}=0 \Longleftrightarrow b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta=0 \Longleftrightarrow b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta=a \int_{d}^{\infty} \pi(\theta \mid x) d \theta \Longleftrightarrow \frac{b}{a} \int_{-\infty}^{d} \pi(\theta \mid x) d \theta=\int_{d}^{\infty} \pi(\theta \mid x) d \theta$
This expression represents a quantile of posterior $\pi(\theta \mid x)$ in terms of a and b. Concretely:

$$
\begin{array}{ll}
\int_{-\infty}^{d} \pi(\theta \mid x) d \theta+\int_{d}^{\infty} \pi(\theta \mid x) d \theta=1 & \text { since prob. adds to } 1 \\
\int_{-\infty}^{d} \pi(\theta \mid x) d \theta+\frac{b}{a} \int_{-\infty}^{d} \pi(\theta \mid x) d \theta=1 & \text { replacing for our minimun } \\
\int_{-\infty}^{d} \pi(\theta \mid x) d \theta=\frac{a}{a+b} & \text { Solving for the posterior quantile }
\end{array}
$$

Hence, the Bayes rule d is the quantile posterior $\frac{a}{a+b}$ of $\pi(\theta \mid x)$.
Note that we should check whether the minimality of the value obtain. Using the second derivative test:

$$
\frac{d^{2} f}{d(d)^{2}}=\frac{d}{d(d)}\left(b \int_{-\infty}^{d} \pi(\theta \mid x) d \theta-a \int_{d}^{\infty} \pi(\theta \mid x) d \theta\right)=b \pi(d \mid x)+a \pi(d \mid x)=(a+b) \pi(d \mid x)=(a+b)
$$

The last equality is holds since the probability of taking action $d(x)$ given x is 1 . By hypothesis a and b are given positive constants, and so is $a+b$, so we have a local minimun. Moreover, this expression is always positive and hence, the minimum found is the global minimum.
(3.4) Suppose that X is distributed as a binomial random variable with index n and parameter θ. Calculate the Bayes rule (based on the single observation X) for estimating θ when the prior distribution is the uniform distribution on $[0,1]$ and the loss function is

$$
L(\theta, d)=(\theta-d)^{2} /\{\theta(1-\theta)\}
$$

Is the rule you obtain minimax?
Solution: We wish to minimize the following expression:

$$
\int_{\Theta} L(\theta, d) \pi(\theta \mid x) d \theta=\int_{0}^{1} \frac{(\theta-d)^{2}}{\theta(1-\theta)} \pi(\theta \mid x) d \theta
$$

Let us first find the posterior distribution $\pi(\theta \mid x)$.

$$
\begin{array}{rlr}
\theta \mid x & \sim \frac{\pi(\theta) f(x ; \theta)}{\int_{\Theta} \pi\left(\theta^{\prime}\right) f\left(x ; \theta^{\prime}\right) d \theta^{\prime}} & \text { by definition of posterior density } \\
& =\frac{1 \cdot\binom{n}{x} \theta^{x}(1-\theta)^{n-x}}{\int_{\Theta} \pi\left(\theta^{\prime}\right) f\left(x ; \theta^{\prime}\right) d \theta^{\prime}} & \text { replacing prior and Binomial distribution } \\
& =\operatorname{constant} \times \theta^{x}(1-\theta)^{n-x} & \\
& \sim \operatorname{Beta}(x+1, n-x+1), & \text { grouping like terms } \\
& \text { by definition of Beta distribution }
\end{array}
$$

Now we can minimize the function:

$$
\begin{array}{rlrl}
f(d) & =\int_{0}^{1} \frac{(\theta-d)^{2}}{\theta(1-\theta)} \pi(\theta \mid x) d \theta & & \text { define } f(d) \text { this way } \\
& =\int_{0}^{1} \frac{(\theta-d)^{2}}{\theta(1-\theta)} \frac{\theta^{x}(1-\theta)^{n-x}}{B(x+1, n-x+1)} d \theta & \text { replace posterior } \\
& =\frac{1}{B(x+1, n-x+1)} \int_{0}^{1}(\theta-d)^{2} \theta^{x-1}(1-\theta)^{n-x-1} d \theta & \text { simplifying }
\end{array}
$$

Note that in this context $\frac{1}{B(x+1, n-x+1)}$ is a constant, and so we can ignore this term for optimization purposes. Hence, optimize $f(d)$ is equivalent to optimize $g(d)$ defined as:

$$
\begin{aligned}
g(d) & =\int_{0}^{1}(\theta-d)^{2} \theta^{x-1}(1-\theta)^{n-x-1} d \theta \\
& =\int_{0}^{1}\left(\theta^{2}-2 \theta d+d^{2}\right) \theta^{x-1}(1-\theta)^{n-x-1} d \theta \\
& =\int_{0}^{1} \theta^{x+1}(1-\theta)^{n-x-1} d \theta-2 d \int_{0}^{1} \theta^{x}(1-\theta)^{n-x-1} d \theta+d^{2} \int_{0}^{1} \theta^{x-1}(1-\theta)^{n-x-1} d \theta
\end{aligned}
$$

Find $\frac{d g}{d(d)}$ (derivative of g with respect to d):

$$
\begin{aligned}
\frac{d g}{d(d)} & =\frac{d}{d(d)}\left[\int_{0}^{1} \theta^{x+1}(1-\theta)^{n-x-1} d \theta-2 d \int_{0}^{1} \theta^{x}(1-\theta)^{n-x-1} d \theta+d^{2} \int_{0}^{1} \theta^{x-1}(1-\theta)^{n-x-1} d \theta\right] \\
& =-2 \int_{0}^{1} \theta^{x}(1-\theta)^{n-x-1} d \theta+2 d \int_{0}^{1} \theta^{x-1}(1-\theta)^{n-x-1} d \theta
\end{aligned}
$$

Set $\frac{d g}{d(d)}=0 \Longleftrightarrow-2 \int_{0}^{1} \theta^{x}(1-\theta)^{n-x-1} d \theta+2 d \int_{0}^{1} \theta^{x-1}(1-\theta)^{n-x-1} d \theta=0 \Longleftrightarrow d=\frac{\int_{0}^{1} \theta^{x}(1-\theta)^{n-x-1} d \theta}{\int_{0}^{1} \theta^{x-1}(1-\theta)^{n-x-1} d \theta}$
We can write this condition in terms of the Beta function, i.e., $B(a, b)=\int_{0}^{1} t^{a-1}(1-t)^{b-1} d t$, as follows:

$$
d=\frac{B(x+1, n-x)}{B(x, n-x)}
$$

Finally, using identities relating the Beta and Gamma function and the fact that n and x are positive integers:

$$
d=\frac{B(x+1, n-x)}{B(x, n-x)}=\frac{\frac{\Gamma(x+1) \Gamma(n-x)}{\Gamma(n+1)}}{\frac{\Gamma(x) \Gamma(n-x)}{\Gamma(n)}}=\frac{\Gamma(x+1) \Gamma(n)}{\Gamma(n+1) \Gamma(x)}=\frac{x!(n-1)!}{n!(x-1)!}=\frac{x}{n}
$$

And hence, the Bayes rule is just the mean $d_{\pi}=\frac{X}{n}$. A similar argument to that in (3.3), using second derivative test, shows that this is in fact the minimum.

The obtained rule d_{π} is minimax since it has constant risk, as the following computation shows:

$$
\begin{array}{rlrl}
R\left(\theta, d_{\pi}\right) & =E_{\theta} L\left(\theta, d_{\pi}\right) & & \text { definition of risk } \\
& =E_{\theta} L\left(\theta, \frac{X}{n}\right) & & \text { replacing for the rule } d_{\pi} \\
& =E_{\theta}\left[\frac{\left(\theta-\frac{X}{n}\right)^{2}}{\theta(1-\theta)}\right] & \text { by loss function } \\
& =E_{\theta}\left[\frac{\theta^{2}-2 \theta \frac{X}{n}+\left(\frac{X}{n}\right)^{2}}{\theta(1-\theta)}\right] & \text { squaring } \\
& =\frac{\theta^{2}-2 \theta\left(\frac{\theta n}{n}\right)+\frac{n \theta(1-\theta)+n^{2} \theta^{2}}{n^{2}}}{\theta(1-\theta)} & \text { expectation of a Binomial and Binomial squared } \\
& =\frac{-\theta^{2}+\frac{n \theta(1-\theta)+n^{2} \theta^{2}}{n^{2}}}{\theta(1-\theta)} \\
& =\frac{n \theta-n \theta^{2}+n^{2} \theta^{2}-n^{2} \theta^{2}}{n^{2}} \\
\theta(1-\theta)
\end{array}
$$

$$
\begin{aligned}
& =\frac{n \theta-n \theta^{2}}{n^{2} \theta(1-\theta)} \\
& =\frac{n(1-\theta)}{n^{2}(1-\theta)} \\
& =\frac{1}{n} \quad \text { Since } n \text { is fixed, this is a constant. }
\end{aligned}
$$

(3.5) At a critical stage in the development of a new airplane, a decision must be taken to continue or to abandon the project. The financial viability of the project can be measured by a parameter $\theta, 0<\theta<1$, the project being profitable if $\theta>\frac{1}{2}$. Data x provide information about θ.
(i) If $\theta<\frac{1}{2}$, the cost to the taxpayer of continuing the project is $\left(\frac{1}{2}-\theta\right)$ (in units of $\$$ bilion), whereas if $\theta>\frac{1}{2}$ it is zero (since the project will be privatized if profitable). If $\theta>\frac{1}{2}$ the cost of abandoning the project is $\left(\theta-\frac{1}{2}\right)$ (due to contractual arrangements for purchasing the airplane from the French), whereas if $\theta<\frac{1}{2}$ it is zero. Derive the Bayes decision rule in terms of the posterior mean of θ given x.

Solution: Let $\mathcal{A}=\{0,1\}$, where 0 denotes abandoning the project and 1 continuing the project. Let us write the loss function as follow:

$$
L(\theta, 0)=\left\{\begin{array}{ll}
0 & \text { if } 0 \leq \theta \leq \frac{1}{2} \\
\left(\theta-\frac{1}{2}\right) & \text { if } \frac{1}{2}<\theta \leq 1
\end{array} \quad L(\theta, 1)= \begin{cases}\left(\frac{1}{2}-\theta\right) & \text { if } 0 \leq \theta \leq \frac{1}{2} \\
0 & \text { if } \frac{1}{2}<\theta \leq 1\end{cases}\right.
$$

We want to minimize $\int_{\Theta} L(\theta, d) \pi(\theta \mid x) d \theta$, i.e.,

$$
\int_{\Theta} L(\theta, d) \pi(\theta \mid x) d \theta= \begin{cases}\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-\theta\right) \pi(\theta \mid x) d \theta & \text { if } d=1 \\ \int_{\frac{1}{2}}^{1}\left(\theta-\frac{1}{2}\right) \pi(\theta \mid x) d \theta & \text { if } d=0\end{cases}
$$

The Bayes rule is that which minimizes the above expression. That is, the Bayes rule will choose to go on with the protect if $\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-\theta\right) \pi(\theta \mid x) d \theta<\int_{\frac{1}{2}}^{1}\left(\theta-\frac{1}{2}\right) \pi(\theta \mid x) d \theta$ or, equivalently, the Bayes rule will choose to abandon the protect if $\int_{\frac{1}{2}}^{1}\left(\theta-\frac{1}{2}\right) \pi(\theta \mid x) d \theta<\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-\theta\right) \pi(\theta \mid x) d \theta$.
(ii) The minister of aviation has prior density $6 \theta(1-\theta)$ for θ. The Prime Minister has prior density $4 \theta^{3}$. The prototype aeroplane is subjected to trials, each independently having probability θ of success, and the data x consist of the total number of trials required for the first successful result to be obtained. For what values of x will there be serious ministerial disagreement?

Solution: Clearly, $X \sim \operatorname{Geometric}(\theta)$, where $X=1,2, \ldots$. Hence $\pi(x)=(1-\theta)^{x-1} \theta$.
We can compute the posterior probability density $\pi(\theta \mid x)$ for the minister of aviation $(M A)$ and the Prime Minister (PM):
MA: $\pi(\theta \mid x)=$ constant $\times \theta(1-\theta)(1-\theta)^{x-1} \theta=\theta^{2}(1-\theta)^{x}=\operatorname{Beta}(3, x+1)$
$P M \pi(\theta \mid x)=$ constant $\times \theta^{3}(1-\theta)^{x-1} \theta=\theta^{4}(1-\theta)^{x-1}=\operatorname{Beta}(5, x)$
We want to find the values of x for which the Bayes rule for $M A$ and $M P$ will disagree. Let $\pi_{M A}(\theta \mid x)$ and $\pi_{M P}(\theta \mid x)$ be the prior of the minister of aviation and Prime Minister respectively. Then, the values of x we are interested in are:

$$
x \text { for which: }\left\{\begin{array}{l}
\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-\theta\right) \pi_{M A}(\theta \mid x) d \theta<\int_{\frac{1}{2}}^{1}\left(\theta-\frac{1}{2}\right) \pi_{M A}(\theta \mid x) d \theta \\
\frac{1}{\frac{1}{2}}\left(\frac{1}{2}-\theta\right) \pi_{M P}(\theta \mid x) d \theta>\int_{\frac{1}{2}}^{1}\left(\theta-\frac{1}{2}\right) \pi_{M P}(\theta \mid x) d \theta \\
\int_{0}^{1}
\end{array}\right.
$$

Solving for x using the fact that $\pi(\theta \mid x)$ is a probability distribution and computing its mean:

$$
\left\{\begin{array} { l }
{ \frac { 1 } { 2 } \int _ { 0 } ^ { \frac { 1 } { 2 } } \pi _ { M A } (\theta | x) d \theta - \int _ { 0 } ^ { \frac { 1 } { 2 } } \theta \pi _ { M A } (\theta | x) d \theta < \int _ { \frac { 1 } { 2 } } ^ { 1 } \theta \pi _ { M A } (\theta | x) d \theta - \frac { 1 } { 2 } \int _ { \frac { 1 } { 2 } } ^ { 1 } \pi _ { M A } (\theta | x) d \theta } \\
{ \frac { 1 } { 2 } \int _ { 0 } ^ { \frac { 1 } { 2 } } \pi _ { M P } (\theta | x) d \theta - \int _ { 0 } ^ { \frac { 1 } { 2 } } \theta \pi _ { M P } (\theta | x) d \theta > \int _ { \frac { 1 } { 2 } } ^ { 1 } \theta \pi _ { M P } (\theta | x) d \theta - \frac { 1 } { 2 } \int _ { \frac { 1 } { 2 } } ^ { 1 } \pi _ { M P } (\theta | x) d \theta }
\end{array} \quad \Longrightarrow \left\{\begin{array}{l}
\frac{1}{2} \int_{0}^{1} \pi_{M A}(\theta \mid x) d \theta-\int_{0}^{1} \theta \pi_{M A}(\theta \mid x) d \theta<0 \\
\frac{1}{2} \int_{0}^{1} \pi_{M P}(\theta \mid x) d \theta-\int_{0}^{1} \theta \pi_{M P}(\theta \mid x) d \theta>0
\end{array}\right.\right.
$$

Note that $\frac{1}{2} \int_{0}^{1} \pi_{M A}(\theta \mid x) d \theta=\frac{1}{2}$ and $\int_{0}^{1} \theta \pi_{M A}(\theta \mid x) d \theta=E\left[\pi_{M A}(\theta \mid x)\right]$. Same for $M P$. We know each of these distributions are Beta and so we know its mean:

$$
E\left[\pi_{M A}(\theta \mid x)\right]=E[\operatorname{Beta}(3, x+1)]=\frac{3}{x+4} \text { and } E\left[\pi_{M P}(\theta \mid x)\right]=E[\operatorname{Beta}(5, x)]=\frac{5}{5+x}
$$

Replacing into our conditions:

$$
\left\{\begin{array} { l }
{ \frac { 1 } { 2 } - E [\pi _ { M A } (\theta | x)] < 0 } \\
{ \frac { 1 } { 2 } - E [\pi _ { M P } (\theta | x)] > 0 }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \frac { 1 } { 2 } - \frac { 3 } { x + 4 } < 0 } \\
{ \frac { 1 } { 2 } - \frac { 5 } { 5 + x } > 0 }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ \frac { 1 } { 2 } < \frac { 3 } { x + 4 } } \\
{ \frac { 1 } { 2 } > \frac { 5 } { 5 + x } }
\end{array} \Longrightarrow \left\{\begin{array} { l }
{ x + 4 < 6 } \\
{ x + 5 > 1 0 }
\end{array} \Longrightarrow \left\{\begin{array}{l}
x<2 \\
x>5
\end{array}\right.\right.\right.\right.\right.
$$

Hence, the minister of aviation will go on with the project if $x<2$ while the Prime Minister will choose to abandon the project if $x>5$. This means that $M A$ will choose to abandon if $x>2$. So, for values $x=3,4$; there will be a disagreement: $M A$ would want to abandon but $P M$ will not. A decision will have to be reached through some other argument.

Note that this result makes intuitive sense: the prime minister prior is a cubic function that places lower emphasis on smaller values of θ and thus, is more tolerant to risk while the opposite is try for the minister of aviation whose prior is a quadratic function.

