M464 - Introduction To Probability II - Homework 8
 Enrique Areyan
 March 13, 2014

Chapter 5

2.4 Suppose that N points are uniformly distributed over the interval $[0, N)$. Determine the probability distribution for the number of points in the interval $[0,1)$ as $N \rightarrow \infty$.

Solution:

Let $X_{1}, X_{2}, \ldots, X_{N}$ be N independent random variables with distribution $X_{i} \sim \operatorname{Uniform}([0, N))$, for all i. Let,

$$
Y_{i}= \begin{cases}1 & \text { if } X_{i} \in[0,1) \\ 0 & \text { otherwise }\end{cases}
$$

Note that $\operatorname{Pr}\left\{Y_{i}=1\right\}=\operatorname{Pr}\left\{X_{i} \in[0,1)\right\}=\frac{1-0}{N-0}=\frac{1}{N}$, by the uniform cdf of uniform distribution on $[0, N)$.
Thus, $Y_{i} \sim \operatorname{Bernoulli}\left(p=\frac{1}{N}\right)$. Now, let $Z=$ number of points in the interval $[0,1)$. Then, $Z=\sum_{i=1}^{N} Y_{i} \sim \operatorname{Binomial}\left(N, \frac{1}{N}\right)$.
By fact given in class we know that $\operatorname{Bin}\left(m, \frac{\mu}{m}\right) \Longrightarrow \operatorname{Pois}(\mu)$ as $m \rightarrow \infty$. Applying this result we get:

$$
Z=\sum_{i=1}^{N} Y_{i} \sim \operatorname{Binomial}\left(N, \frac{1}{N}\right) \Longrightarrow Z \sim \operatorname{Pois}(1) \text { as } N \rightarrow \infty
$$

Hence, the probability distribution for the number of points in the interval $[0,1)$ is Pois (1) as $N \rightarrow \infty$.
2.7 N bacteria are spread independently with uniform distribution on a microscope slide of area A. An arbitrary region having area a is selected for observation. Determine the probability of k bacteria within the region of area a. Show that as $N \rightarrow \infty$ and $a \rightarrow 0$ such that $(a / A) N \rightarrow c(0<c<\infty)$, then $p(k) \rightarrow e^{-c} c^{k} / k!$.

Solution: Fix an arbitrary region of area a. The proportion of bacteria in this area is $\frac{a}{A}$. Let,

$$
Y_{i}= \begin{cases}1 & \text { if bacteria } i \text { is in the region } a, \text { for } i=1,2, \ldots, N \\ 0 & \text { otherwise }\end{cases}
$$

Note that since bacteria is uniformly distributed over the entire region A, we have that $\operatorname{Pr}\left\{Y_{i}=1\right\}=\frac{a}{A}$, i.e., the chance of a bacteria being in the area a is equal to the proportion of bacteria in such area. Thus, $Y_{i} \sim \operatorname{Bernoulli}\left(p=\frac{a}{A}\right)$. Then,

$$
Z=\text { number of bacteria in region } a=\sum_{i=1}^{N} Y_{i} \sim \operatorname{Binomial}\left(N, \frac{a}{A}\right)
$$

So, the probability of k bacteria within the region of area a is $\operatorname{Pr}\{Z=k\}=\binom{N}{k}\left(\frac{a}{A}\right)^{k}\left(1-\frac{a}{A}\right)^{N-k}$, by Binomial pmf. Now, let $N \rightarrow \infty$ and $a \rightarrow 0$ such that $(a / A) N \rightarrow c(0<c<\infty)$. Then:

$$
\begin{aligned}
\binom{N}{k}\left(\frac{a}{A}\right)^{k}\left(1-\frac{a}{A}\right)^{N-k} & =\frac{N!}{(N-k)!k!}\left(\frac{a}{A}\right)^{k}\left(1-\frac{a}{A}\right)^{N-k} & \text { def. of binomial coefficient } \\
& =\frac{N(N-1)(N-2) \cdots(N-k+1)}{k!}\left(\frac{a}{A}\right)^{k}\left(1-\frac{a}{A}\right)^{N-k} & \text { def. of factorial } \\
& =\frac{N(N-1)(N-2) \cdots(N-k+1)}{k!}\left(\frac{c}{N}\right)^{k}\left(1-\frac{c}{N}\right)^{N-k} & \text { hypothesis } \\
& =\frac{N(N-1)(N-2) \cdots(N-k+1)}{N^{k}} \frac{c^{k}}{k!}\left(1-\frac{c}{N}\right)^{N-k} & \text { pulling } N^{k} \text { out }
\end{aligned}
$$

$$
\begin{array}{lll}
= & \frac{N}{N} \frac{N-1}{N} \frac{N-2}{N} \cdots \frac{N-k+1}{N} \frac{c^{k}}{k!}\left(1-\frac{c}{N}\right)^{N-k} & \text { rearranging } \\
=1\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k+1}{N}\right) \frac{c^{k}}{k!}\left(1-\frac{c}{N}\right)^{N-k} & \text { simplifying }
\end{array}
$$

Now we can analyze each piece:

$$
\begin{gathered}
1\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k+1}{N}\right) \rightarrow 1 \text { as } N \rightarrow \infty, \text { because } \frac{i}{N} \rightarrow 0 \text { as } N \rightarrow \infty \\
\left(1-\frac{c}{N}\right)^{N-k}=\frac{\left(1-\frac{c}{N}\right)^{N}}{\left(1-\frac{c}{N}\right)^{k}} \rightarrow \frac{e^{-c}}{1}=e^{-c} \text { as } N \rightarrow \infty, \text { by limit definition of constant } e \text { and } \frac{c}{N} \rightarrow 0 \text { as } N \rightarrow \infty \\
\frac{c^{k}}{k!} \text { are constants and so remain unchanged by taking limits }
\end{gathered}
$$

Thus,

$$
\begin{gathered}
p(k)=\binom{N}{k}\left(\frac{a}{A}\right)^{k}\left(1-\frac{a}{A}\right)^{N-k}=1\left(1-\frac{1}{N}\right)\left(1-\frac{2}{N}\right) \cdots\left(1-\frac{k+1}{N}\right) \frac{c^{k}}{k!}\left(1-\frac{c}{N}\right)^{N-k} \rightarrow \frac{e^{-c} c^{k}}{k!} \\
\text { as } N \rightarrow \infty \text { and } a \rightarrow 0 \text { such that }(a / A) N \rightarrow c(0<c<\infty)
\end{gathered}
$$

Note that this is Poisson with parameter c.

