# M464 - Introduction To Probability II - Homework 7 <br> Enrique Areyan <br> March 06, 2014 

## Chapter 5

Exercises:
1.3 Let $X$ and $Y$ be independent Poisson distributed random variables with parameters $\alpha$ and $\beta$, respectively. Determine the conditional distribution of $X$, given that $N=X+Y=n$.

Solution: We wish to compute $\operatorname{Pr}\{X=k \mid X+Y=n\}$, for an arbitrary value of $k \in \mathbb{N}$. Note that by theorem 1.1 $X+Y \sim \operatorname{Pois}(\alpha+\beta)$. We proceed as follow:

$$
\begin{aligned}
\operatorname{Pr}\{X=k \mid X+Y=n\} & =\frac{\operatorname{Pr}\{X=k, X+Y=n\}}{\operatorname{Pr}\{X+Y=n\}} & & \text { def. of conditional prob. } \\
& =\frac{\operatorname{Pr}\{X=k, Y=n-k\}}{\operatorname{Pr}\{X+Y=n\}} & & \text { replacing for the value of } X \\
& =\frac{\operatorname{Pr}\{X=k\} \operatorname{Pr}\{Y=n-k\}}{\operatorname{Pr}\{X+Y=n\}} & & \text { by independence of } X \text { and } Y \\
& =\frac{\frac{e^{-\alpha} \alpha^{k}}{k!} \cdot \frac{e^{-\beta} \beta^{n-k}}{(n-k)!}}{\frac{e^{-(\alpha+\beta)}(\alpha+\beta)^{n}}{n!}} & & \text { by def of Pois. distribution } \\
& =\frac{n!e^{-\alpha} \alpha^{k} e^{-\beta} \beta^{n-k}}{k!(n-k)!e^{-(\alpha+\beta)}(\alpha+\beta)^{n}} & & \text { multiplying fractions } \\
& =\binom{n}{k} \frac{\alpha^{k} \beta^{n-k}}{(\alpha+\beta)^{n}} & & \text { definition of binomial coefficient and cancelling } e^{\prime} \mathrm{s} \\
& =\binom{n}{k}\left(\frac{\alpha}{\alpha+\beta}\right)^{k}\left(\frac{\beta}{\alpha+\beta}\right)^{n-k} & & \text { rearranging terms } \\
& =\binom{n}{k} p^{k}(1-p)^{n-k} & & \text { letting } p=\frac{\alpha}{\alpha+\beta} \Longrightarrow 1-p=\frac{\beta}{\alpha+\beta}
\end{aligned}
$$

We recognize this distribution as a Binomial distribution with success probability $p$. Therefore,

$$
X \left\lvert\, X+Y=n \sim \operatorname{Binom}\left(n, \frac{\alpha}{\alpha+\beta}\right)\right.
$$

Note that $p$ is well defined because both $\alpha$ and $\beta$ are greater than zero.
1.6 Messages arrive at a telegraph office as a Poisson process with mean rate of 3 messages per hour.
(a) What is the probability that no messages arrive during the morning hours 8:00 A.M to noon?

Solution: Let $X=$ number of messages that arrive during the morning hours 8:00 A.M to noon. Then, by the properties of Poisson processes we know that

$$
X \sim \operatorname{Pois}\left(\frac{3}{\text { hour }} \cdot(12-8) \text { hour }\right)=\operatorname{Pois}(12)
$$

So now we can find $\operatorname{Pr}\{X=0\}=\frac{e^{-12} 12^{0}}{0!}=e^{-12}=0.00000614421$. This is very unlikely, which makes sense because on average 3 messages arrive per hour and we are looking at a period of 4 hours with no messages arriving.
(b) What is the distribution of the time at which the first afternoon message arrives?

Solution: Let $X$ be the poisson process and let $T=$ the time at which the first afternoon message arrives. Afternoon is the period between 12:00 p.m. and 12:00 a.m. We know the distribution of messages arriving in this period and so we can compute the distribution of time, for $t=13,14,15, \ldots 24$ as follow:

$$
\begin{array}{rlrl}
\operatorname{Pr}\{T>t\} & =\operatorname{Pr}\{\text { the first afternoon message arrives after } t \text { units of time }\} & \\
& =\operatorname{Pr}\{(X(t)-X(12))=0\} & & \text { By properties of Pois. process } \\
& =\operatorname{Pr}\{(X(t-12))=0\} & & \text { By }
\end{array}
$$

We know the distribution of $X(t-12) \sim \operatorname{Pois}\left(\frac{3}{\text { hour }} \cdot(t-12)\right.$ hours $)=\operatorname{Pois}(3(t-12))$. Hence,

$$
\operatorname{Pr}\{T>t\}=\operatorname{Pr}\{(X(t-12))=0\}=\frac{e^{-3(t-12)}(3(t-12))^{0}}{0!}=e^{-3(t-12)}
$$

Finally, to get the cumulative distribution take the complement of the survival function:

$$
\operatorname{Pr}\{T \leq t\}=1-\operatorname{Pr}\{T>t\}=1-e^{-3(t-12)}
$$

Since $t>12$, a change of variables $t-12=x \Longrightarrow \operatorname{Pr}\{T \leq x\}=1-e^{-3 x}$, thus, $T \sim \operatorname{Exp}(3)$.

## Problems:

1.2 Suppose that minor defects are distributed over the length of a cable as a Poisson process with rate $\alpha$, and that, independently major defects are distributed over the cable according to a Poisson process of rate $\beta$. Let $X(t)$ be the number of defects, either major or minor, in the cable up to length $t$. Argue that $X(t)$ must be a Poisson process of rate $\alpha+\beta$.

## Solution:

Let us check that $\langle X(t) ; t \geq 0\rangle$ is a Poisson process of intensity (or rate) $\alpha+\beta$. First, let us define $\langle Y(t) ; t \geq 0\rangle$ to be the Poisson process for minor defects and $\langle Z(t) ; t \geq 0\rangle$ to be the Poisson process for major defects. Then, by definition of Poisson process we know that $Y(t) \sim \operatorname{Pois}(\alpha t)$, and $Z(t) \sim \operatorname{Pois}(\beta t)$, both for every $t>0$. Now, by definition, the total number of defects is the sum of minor and major defects, i.e., $X(t)=Y(t)+Z(t)$. Since $Y$ and $Z$ are independent, by theorem 1.1 we conclude $X(t)=Y(t)+Z(t) \sim \operatorname{Pois}((\alpha+\beta) t)$, which holds for every $t>0$. Also, $\alpha>0$ and $\beta>0$ (by definition of Poisson process), and so $\alpha+\beta>0$. This takes care of conditions $(i)$ and ( $v$ ) given in class for being a Poisson process. For condition (ii) note that $Y(t) \in \mathbb{N}$ and $Z(t) \in \mathbb{N}$ and thus, $X(t) \in \mathbb{N}$. Condition (iv) is easily checked: $X(0)=Y(0)+Z(0)=0+0=0$. It remains to check condition (iii) of independent stationary increments. Let us check this in two steps:
a) Independent increments: Choose arbitrary time points $t_{i}$. Then,

$$
X\left(t_{k+1}\right)-X\left(t_{k}\right)=\left[Y\left(t_{k+1}\right)+Z\left(t_{k+1}\right)\right]-\left[Y\left(t_{k}\right)+Z\left(t_{k}\right)\right]=\left[Y\left(t_{k+1}\right)-Y\left(t_{k}\right)\right]+\left[Z\left(t_{k+1}\right)-Z\left(t_{k}\right)\right]
$$

Since $Y$ and $Z$ are Poisson processes, each summand is independent by the independent of increments of each process. Also, since $Y$ and $Z$ are independent, their sum is independent, which shows that $X$ has independent increments.
b) Stationary increments: let us show that for any $t>0$, the distribution of $X(s+t)-X(s)$ does not depend on $s$.

$$
\begin{aligned}
\operatorname{Pr}\{X(s+t)-X(s)=k\}= & \operatorname{Pr}\{[Y(s+t)+Z(s+t)]-[Y(s)+Z(s)]=k\} \text { by definition of } X \\
= & \operatorname{Pr}\{[Y(s+t)-Y(s)]+[Z(s+t)-Z(s)]=k\} \text { rearranging terms } \\
= & \sum_{n=0}^{k} \operatorname{Pr}\{[Y(s+t)-Y(s)]+[Z(s+t)-Z(s)]=k \mid[Y(s+t)-Y(s)]=n\} \operatorname{Pr}\{[Y(s+t)-Y(s)]=n\} \\
& \text { (law of total prob) } \\
= & \sum_{n=0}^{k} \operatorname{Pr}\{[Z(s+t)-Z(s)]=k-n\} \operatorname{Pr}\{[Y(s+t)-Y(s)]=n\} \text { by independence of } Y \text { and } Z
\end{aligned}
$$

Since both $Y$ and $Z$ have stationary, independent increments, the distribution of each product above does not depend on $s$ and so the distribution of $X$ won't depend on $s$ either, i.e, $X$ has independent stationary increments.
1.3 The generating function of a probability mass function $p_{k}=\operatorname{Pr}\{X=k\}$, for $k=0,1, \ldots$, is defined by

$$
g_{X}(s)=E\left[s^{X}\right]=\sum_{k=0}^{\infty} p_{k} s^{k} \quad \text { for }|s|<1
$$

Show that the generating function for a Poisson random variable $X$ with mean $\mu$ is given by

$$
g_{X}(s)=e^{-\mu(1-s)}
$$

Solution: Let $X \sim \operatorname{Pois}(\mu)$ and $|s|<1$. Then,

$$
\begin{aligned}
g_{X}(s) & =\sum_{k=0}^{\infty} p_{k} s^{k} & & \text { by definition of generating function } \\
& =\sum_{k=0}^{\infty} \frac{e^{-\mu} \mu^{k}}{k!} s^{k} & & \text { Poisson p.m.f } \\
& =e^{-\mu} \sum_{k=0}^{\infty} \frac{(s \mu)^{k}}{k!} & & \text { Factoring constant and rearranging terms } \\
& =e^{-\mu} e^{(s-\mu)} & & \text { Taylor series of } e \\
& =e^{-\mu(1-s)} & & \text { Summing exponents }
\end{aligned}
$$

1.6 Let $\{X(t) ; t \geq 0\}$ be a Poisson process of rate $\lambda$. For $s, t>0$, determine the conditional distribution of $X(t)$, given that $X(t+s)=n$.

Solution: Let $k \leq m$. Then:

$$
\begin{array}{rll}
\operatorname{Pr}\{X(t)=k \mid X(t+s)=n\} & =\frac{\operatorname{Pr}\{X(t)=k, X(t+s)=n\}}{\operatorname{Pr}\{X(t+s)=n\}} & \text { conditional prob. } \\
& =\frac{\operatorname{Pr}\{X(t+s)=n \mid X(t)=k\} \operatorname{Pr}\{X(t)=k\}}{\operatorname{Pr}\{X(t+s)=n\}} & \text { conditional prob. } \\
& =\frac{\operatorname{Pr}\{X(t+s)-X(t)=n-k\} \operatorname{Pr}\{X(t)=k\}}{\operatorname{Pr}\{X(t+s)=n\}} & \text { Independent increments of Pois. process }
\end{array}
$$

Now, we know the distribution of each of these:

$$
X(t+s)-X(t) \sim \operatorname{Pois}([(t+s)-t] \lambda)=\operatorname{Pois}(\lambda s) ; \quad X(t+s) \sim \operatorname{Pois}(\lambda(t+s)) ; \quad X(t) \sim \operatorname{Pois}(\lambda t)
$$

Hence, we can compute the distribution we are interested in:

$$
\begin{aligned}
\operatorname{Pr}\{X(t)=k \mid X(t+s)=n\} & =\frac{\frac{e^{-\lambda s}(\lambda s)^{n-k}}{(n-k)!} \cdot \frac{e^{-\lambda t}(\lambda t)^{k}}{k!}}{\frac{e^{-\lambda(t+s)}[\lambda(t+s)]^{n}}{n!}}=\frac{e^{-\lambda s}(\lambda s)^{n-k} e^{-\lambda t}(\lambda t)^{k} n!}{e^{-\lambda(t+s)} k!(n-k)![\lambda(t+s)]^{n}} \\
& =\binom{n}{k} \frac{(\lambda s)^{n-k}(\lambda t)^{k}}{\lambda^{n}(t+s)^{n}} \\
& =\binom{n}{k} \frac{s^{n-k} t^{k}}{(t+s)^{n}} \\
& =\binom{n}{k}\left(\frac{t}{t+s}\right)^{k}\left(\frac{s}{t+s}\right)^{n-k} \\
& =\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { Letting } p=\frac{t}{t+s} \Rightarrow 1-p=\frac{s}{t+s}
\end{aligned}
$$

Hence, $X(t) \left\lvert\, X(t+s)=n \sim \operatorname{Binom}\left(n, \frac{t}{t+s}\right)\right.$

