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Chapter 5

Exercises:

1.3 Let X and Y be independent Poisson distributed random variables with parameters α and β, respectively. Determine the
conditional distribution of X, given that N = X + Y = n.

Solution: We wish to compute Pr{X = k|X + Y = n}, for an arbitrary value of k ∈ N. Note that by theorem 1.1
X + Y ∼ Pois(α+ β). We proceed as follow:

Pr{X = k|X + Y = n} =
Pr{X = k,X + Y = n}

Pr{X + Y = n}
def. of conditional prob.

=
Pr{X = k, Y = n− k}

Pr{X + Y = n}
replacing for the value of X

=
Pr{X = k}Pr{Y = n− k}

Pr{X + Y = n}
by independence of X and Y

=

e−ααk

k!
· e
−ββn−k

(n− k)!
e−(α+β)(α+ β)n

n!

by def of Pois. distribution

=
n!e−ααke−ββn−k

k!(n− k)!e−(α+β)(α+ β)n
multiplying fractions

=

(
n

k

)
αkβn−k

(α+ β)n
definition of binomial coefficient and cancelling e′s

=

(
n

k

)(
α

α+ β

)k (
β

α+ β

)n−k
rearranging terms

=

(
n

k

)
pk(1− p)n−k letting p =

α

α+ β
=⇒ 1− p = β

α+ β

We recognize this distribution as a Binomial distribution with success probability p. Therefore,

X|X + Y = n ∼ Binom
(
n,

α

α+ β

)
Note that p is well defined because both α and β are greater than zero.

1.6 Messages arrive at a telegraph office as a Poisson process with mean rate of 3 messages per hour.

(a) What is the probability that no messages arrive during the morning hours 8:00 A.M to noon?

Solution: Let X = number of messages that arrive during the morning hours 8:00 A.M to noon. Then, by the
properties of Poisson processes we know that

X ∼ Pois( 3

hour
· (12− 8)hour) = Pois(12)

So now we can find Pr{X = 0} = e−12120

0!
= e−12 = 0.00000614421. This is very unlikely, which makes sense because

on average 3 messages arrive per hour and we are looking at a period of 4 hours with no messages arriving.
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(b) What is the distribution of the time at which the first afternoon message arrives?

Solution: Let X be the poisson process and let T = the time at which the first afternoon message arrives. Af-
ternoon is the period between 12:00 p.m. and 12:00 a.m. We know the distribution of messages arriving in this
period and so we can compute the distribution of time, for t = 13, 14, 15, . . . 24 as follow:

Pr{T > t} = Pr{the first afternoon message arrives after t units of time}
= Pr{(X(t)−X(12)) = 0}
= Pr{(X(t− 12)) = 0} By properties of Pois. process

We know the distribution of X(t− 12) ∼ Pois( 3

hour
· (t− 12)hours) = Pois(3(t− 12)). Hence,

Pr{T > t} = Pr{(X(t− 12)) = 0} = e−3(t−12)(3(t− 12))0

0!
= e−3(t−12)

Finally, to get the cumulative distribution take the complement of the survival function:

Pr{T ≤ t} = 1− Pr{T > t} = 1− e−3(t−12)

Since t > 12, a change of variables t− 12 = x =⇒ Pr{T ≤ x} = 1− e−3x, thus, T ∼ Exp(3).

Problems:

1.2 Suppose that minor defects are distributed over the length of a cable as a Poisson process with rate α, and that, indepen-
dently major defects are distributed over the cable according to a Poisson process of rate β. Let X(t) be the number of
defects, either major or minor, in the cable up to length t. Argue that X(t) must be a Poisson process of rate α+ β.

Solution:

Let us check that 〈X(t); t ≥ 0〉 is a Poisson process of intensity (or rate) α + β. First, let us define 〈Y (t); t ≥ 0〉 to be
the Poisson process for minor defects and 〈Z(t); t ≥ 0〉 to be the Poisson process for major defects. Then, by definition
of Poisson process we know that Y (t) ∼ Pois(αt), and Z(t) ∼ Pois(βt), both for every t > 0. Now, by definition, the
total number of defects is the sum of minor and major defects, i.e., X(t) = Y (t) + Z(t). Since Y and Z are independent,
by theorem 1.1 we conclude X(t) = Y (t) + Z(t) ∼ Pois((α + β)t), which holds for every t > 0. Also, α > 0 and β > 0
(by definition of Poisson process), and so α + β > 0. This takes care of conditions (i) and (v) given in class for being a
Poisson process. For condition (ii) note that Y (t) ∈ N and Z(t) ∈ N and thus, X(t) ∈ N. Condition (iv) is easily checked:
X(0) = Y (0) + Z(0) = 0 + 0 = 0. It remains to check condition (iii) of independent stationary increments. Let us check
this in two steps:

a) Independent increments: Choose arbitrary time points ti. Then,

X(tk+1)−X(tk) = [Y (tk+1) + Z(tk+1)]− [Y (tk) + Z(tk)] = [Y (tk+1)− Y (tk)] + [Z(tk+1)− Z(tk)]

Since Y and Z are Poisson processes, each summand is independent by the independent of increments of each process.
Also, since Y and Z are independent, their sum is independent, which shows that X has independent increments.

b) Stationary increments: let us show that for any t > 0, the distribution of X(s+ t)−X(s) does not depend on s.

Pr{X(s+ t)−X(s) = k} = Pr{[Y (s+ t) + Z(s+ t)]− [Y (s) + Z(s)] = k} by definition of X
= Pr{[Y (s+ t)− Y (s)] + [Z(s+ t)− Z(s)] = k} rearranging terms

=
k∑

n=0
Pr{[Y (s+ t)− Y (s)] + [Z(s+ t)− Z(s)] = k|[Y (s+ t)− Y (s)] = n}Pr{[Y (s+ t)− Y (s)] = n}

(law of total prob)

=
k∑

n=0
Pr{[Z(s+ t)− Z(s)] = k − n}Pr{[Y (s+ t)− Y (s)] = n} by independence of Y and Z

Since both Y and Z have stationary, independent increments, the distribution of each product above does not depend
on s and so the distribution of X won’t depend on s either, i.e, X has independent stationary increments.

1.3 The generating function of a probability mass function pk = Pr{X = k}, for k = 0, 1, . . . , is defined by

gX(s) = E[sX ] =

∞∑
k=0

pks
k for |s| < 1
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Show that the generating function for a Poisson random variable X with mean µ is given by

gX(s) = e−µ(1−s)

Solution: Let X ∼ Pois(µ) and |s| < 1. Then,

gX(s) =
∞∑
k=0

pks
k by definition of generating function

=
∞∑
k=0

e−µµk

k!
sk Poisson p.m.f

= e−µ
∞∑
k=0

(sµ)k

k!
Factoring constant and rearranging terms

= e−µe(s−µ) Taylor series of e

= e−µ(1−s) Summing exponents

1.6 Let {X(t); t ≥ 0} be a Poisson process of rate λ. For s, t > 0, determine the conditional distribution of X(t), given that
X(t+ s) = n.

Solution: Let k ≤ m. Then:

Pr{X(t) = k|X(t+ s) = n} =
Pr{X(t) = k,X(t+ s) = n}

Pr{X(t+ s) = n}
conditional prob.

=
Pr{X(t+ s) = n|X(t) = k}Pr{X(t) = k}

Pr{X(t+ s) = n}
conditional prob.

=
Pr{X(t+ s)−X(t) = n− k}Pr{X(t) = k}

Pr{X(t+ s) = n}
Independent increments of Pois. process

Now, we know the distribution of each of these:

X(t+ s)−X(t) ∼ Pois([(t+ s)− t]λ) = Pois(λs); X(t+ s) ∼ Pois(λ(t+ s)); X(t) ∼ Pois(λt)

Hence, we can compute the distribution we are interested in:

Pr{X(t) = k|X(t+ s) = n} =

e−λs(λs)n−k

(n− k)!
· e
−λt(λt)k

k!

e−λ(t+s)[λ(t+ s)]n

n!

=
e−λs(λs)n−ke−λt(λt)kn!

e−λ(t+s)k!(n− k)![λ(t+ s)]n

=

(
n

k

)
(λs)n−k(λt)k

λn(t+ s)n

=

(
n

k

)
sn−ktk

(t+ s)n

=

(
n

k

)(
t

t+ s

)k (
s

t+ s

)n−k

=

(
n

k

)
pk(1− p)n−k Letting p =

t

t+ s
⇒ 1− p = s

t+ s

Hence, X(t)|X(t+ s) = n ∼ Binom
(
n,

t

t+ s

)
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