
M464 - Introduction To Probability II - Homework 2

Enrique Areyan
January 30, 2014

Chapter 3

(3.1) An urn contains six tags, of which three are red and three are green. Two tags are selected from the urn. If one tag is
red and the other is green, then the selected tags are discarded and two blue tags are returned to the urn. Otherwise,
the selected tags are returned to the urn. This process repeats until the urn contains only blue tags. Let Xn denote the
number of red tags in the urn after the nth draw, with X0 = 3. Given the transition probability matrix.

Solution: First note that if Xn = 0 (we have no red balls), then Xn+1 = 0, i.e., we will have no red balls. (State
0 is absorbing). Now, let us analyze the transition by cases. This is easily done by drawing the tree diagram for the
experiment of drawing two balls depending on the number of red balls. Note that in the following diagrmasG stands for
selecting a green ball and R a red ball:

Xn = 1 . If there is only one red ball then the bag has one red ball, one green ball and four blue balls:

Therefore, the probability of selection one green ball and one red ball is 1
6 ·

1
5 + 1

6 ·
1
5 = 2 1

6
1
5 = 1

15 This is precisely
the probability of moving from state 1 to state 0 since we replace the only remaining red ball with a blue ball. The
complement 1− 1

15 = 14
15 is the probability of selecting something other than a green and a red ball and thus, staying

in state 1.

Xn = 2 . If there are two red balls then the bag has two red balls, two green balls and two blue balls: Therefore, the
probability of selecting one green ball and one red ball is 2

6 ·
2
5 +

2
6 ·

2
5 = 2 2

6 ·
2
5 = 4

15 . This is precisely the probability
of moving from state 2 to state 1 since we replace a red ball with a blue ball. The complement 1 − 4

15 = 11
5 is the

probability of selecting something other than a green and a red ball and thus, staying in state 2.

I omit the tree diagram for this case to save space
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Xn = 3 . If there are three red balls then there are no blue balls and the bag has three red and three green balls:

Therefore, the probability of selecting one green ball and one red ball is 3
6 ·

3
5 +

3
6 ·

3
5 = 2 3

6 ·
3
5 = 3

5 . This is precisely the
probability of moving from state 3 to state 2 since we replace a red ball with a blue ball. The complement 1− 3

5 = 2
5

is the probability of selecting something other than a green and a red ball and thus, staying in state 3.

Hence, the transition probability matrix is:

P =

0 1 2 3
0 1 0 0 0
1 1/15 14/15 0 0
2 0 4/15 11/15 0
3 0 0 3/5 2/5

(3.5) You are going to successively flip a quarter until the pattern HHT appears; that is, until you observe two successive
heads followed by a tails. In order to calculate some properties of this game, you set up a Markov chain with the following
states: 0, H,HH, and HHT, where 0 represents the starting point, H represents a single observed head on the last flip,
HH represents two successive heads on the last two flips, and HHT is the sequence you are looking for. Observe that if
you have just tossed a tails, followed by a heads, a next toss of a tails effectively starts you over again in your quest for
the HHT sequence. Set up the transition probability matrix.

Solution: First note that if you are in state HHT the game is over and so you stay in that state. In other words,
the state HHT is absorbing. If you are in the starting state, then there is 1/2 chance of seeing a heads and moving to
state H and 1/2 chance of seeing a tails and start over, i.e., go to state 0. In Markov chain language, these probabilities
are: P{Xn+1 = H|Xn = 0} = 1/2, and P{Xn+1 = 0|Xn = 0} = 1/2 respectively. That takes care of the first and last
rows. For the middle rows: if you are in state H, then there is 1/2 chance of seeing another head and thus, move to state
HH. However, if you are in state H and immediately see a tails, then you have to start over and so you go to state 0 with
probability 1/2. Finally, if you are in state HH then there is 1/2 probability of seeing a heads and staying in state HH
and 1/2 probability of seeing a tail and finishing the game, i.e., moving to state HHT .
Hence, the transition probability matrix is:

P =

0 H HH HHT
0 1/2 1/2 0 0
H 1/2 0 1/2 0

HH 0 0 1/2 1/2
HHT 0 0 0 1

(3.6) Two teams, A and B, are to play a best of seven series of games. Suppose that the outcomes of successive games are
independent, and each is won by A with probability p and won by B with probability 1− p. Let the state of the system be
represented by the pair (a, b), where a is the number of games won by A, and b is the number of games won by B. Specify
the transition probability matrix. Note that a+ b ≤ 7 and that the series ends whenever a = 4 or b = 4.

Solution: Let (i, j) and (k, l) be states in the system. If i, j, k, l ∈ {0, 1, 2, 3} then a key observation is that transi-
tions can only occur between states (i, j) and (k, l) if the difference between k+ l and i+ j is one, i.e., (k+ l)− (i+ j) = 1.
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This is because states represent successive games, one played after the other. So, for example, we can’t transition from
state (1, 2) to state (3, 4), because there are games to be play in between. In this example we can only transition from
(1, 2) to state (2, 2) in case team A wins the next game and ties the series, or (1, 3) in case team B wins.
If either i = 4 or j = 4, then there are no transitions. In other words, states (4, i) and (i, 4) are absorbing for i ∈ {0, 1, 2, 3},
representing the fact that the series is over and one of the teams have won.
Let us write the transition matrix in two cases:

If i, j, k, l ∈ {0, 1, 2, 3} then, either one of the teams can win the next game with probabilities given by:

P(i,j),(k,l) =


p if k = i+ 1 and j = l (team A wins)
1− p if l = j + 1 and i = k (team B wins)
0 otherwise

Otherwise, if i = 4 or j = 4, the series is over and these are absorbing state, i.e.,:

P(i,j),(k,l) =

{
1 if (i, j) = (k, l)

0 otherwise

(4.5) (Exercise). A coin is tossed repeatedly until either two successive heads appear or two successive tails appear. Suppose
the first coin toss results in a head. Find the probability that the game ends with two successive tails.

Solution: We could model this game as a 4 or a 6 state Markov Chain. In the first case we would have states
{HT, TH,HH, TT} and in the second case states {H,T,HT, TH,HH, TT}. In the former case we would omit states
H and T and think of the game as consisting of only the last two tosses of the coin. In the latter, we would include H and
T which could seem as "artificial" since the game is concern only with the last two states of the coin. However, including
states H and T has the advantage of including all possibilities and allowing for direct computeation and thus, I will model
the game with 6 states as given by the following transition probability matrix:

P =

H T HT TH HH TT
H 0 0 1/2 0 1/2 0
T 0 0 0 1/2 0 1/2

HT 0 0 0 1/2 0 1/2
TH 0 0 1/2 0 1/2 0
HH 0 0 0 0 1 0
TT 0 0 0 0 0 1

States HH and TT are absorbing since these are the final states of the game. Other states follow simple rules of probability
assuming the coin is fair and tosses are independent. For example, transitioning from state HT to state TT means the
toss Xn results in a tail T with probability 1/2.

Having setup the transition matrix, let us perform first step analysis. First, let us use define:

T = min{n ≥ 0;Xn = HH or Xn = TT} - absorption time -

And the following probabilities:

ui = Pr{XT = TT |X0 = i}, where i ∈ {H,T,HT, TH,HH, TT}

From this and the Markov property, it follows that the probabilities for the first step X1 are:

Pr{XT = TT |X1 = H} = uH
Pr{XT = TT |X1 = T} = uT
Pr{XT = TT |X1 = HT} = uHT

Pr{XT = TT |X1 = TH} = uTH

Pr{XT = TT |X1 = HH} = uHH = 0 since state HH is absorbing
Pr{XT = TT |X1 = TT} = uTT = 1 since we are already in state TT
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We wish to solve for uH , i.e., the probability that the game ends with two successive tails TT given that the first coin toss
results in a head. By first step analysis (law of total probability and conditioning on the first step), we have:

uH = Pr{XT = TT |X0 = H}
=

∑
i

Pr{XT = TT |X0 = H,X1 = i}Pr{X1 = i|X0 = H}, where i ∈ {H,T,HT, TH,HH, TT} law of total prob.

=
∑
i

Pr{XT = TT |X1 = i}Pr{X1 = i|X0 = H}, Markov Property

= Pr{XT = TT |X1 = H}Pr{X1 = H|X0 = H}+ Pr{XT = TT |X1 = T}Pr{X1 = T |X0 = H}+
Pr{XT = TT |X1 = HT}Pr{X1 = HT |X0 = H}+ Pr{XT = TT |X1 = TH}Pr{X1 = TH|X0 = H}+
Pr{XT = TT |X1 = HH}Pr{X1 = HH|X0 = H}+ Pr{XT = TT |X1 = TT}Pr{X1 = TT |X0 = H}

= 0uH + 0uT + 1
2uHT + 0uTH + 1

2uHH + 0uTT using the information on the transition matrix and previous def.
= 1

2uHT + 1
2uHH simplifying

= 1
2uHT since uHH = 0

Therefore, uH = 1
2uHT . Proceeding in this manner, we can set up the following equations (I won’t type all details to save

space):

uHT = 1
2uTH + 1

2
uTH = 1

2uHT

Now we can solve this simultaneous system:

uHT =
1

2
(
1

2
uHT ) +

1

2
=

1

4
uHT +

1

2
⇒ 3

4
uHT =

1

2
⇒ uHT =

2

3

Lastly, uH = 1
2uHT = 1

2
2
3 =

1

3
. Hence, there is a 1

3 probability that the game ends with two successive tails TT given

that the first coin toss results in a head

(4.2) A zero-seeking device operates as follows: If it is in state m at time n, then at time n + 1, its position is uniformly
distributed over the states 0, 1, . . . ,m− 1. Find the expected time until the device first hits zero starting from state m.

Solution: The device can be modeled as a Markov Chain with the following transition probability matrix is:

P =

0 1 2 3 · · · m− 1 m
0 1 0 0 0 · · · 0 0
1 1 0 0 0 · · · 0 0
2 1/2 1/2 0 0 · · · 0 0
3 1/3 1/3 1/3 0 · · · 0 0
...

...
...

...
...

. . .
...

...
m− 1 1/m− 1 1/m− 1 1/m− 1 1/m− 1 · · · 0 0
m 1/m 1/m 1/m 1/m · · · 1/m 0

Let T = min{n ≥ 0 : Xn = 0}. We wish to compute E[T |X0 = m]. Let vi = E[T |X0 = i], for i = 0, 1, 2, . . . ,m − 1,m.
Note that v0 = 0, v1 = 1, i.e., if we are in state 0 there is no wait time, and if we are in state 1 we are certain to be in
state 0 the next time period. By first step analysis, we have that:

v2 = 1 + v0
1
2 + v1

1
2

v3 = 1 + v0
1
3 + v1

1
3 + v2

1
3

v4 = 1 + v0
1
4 + v1

1
4 + v2

1
4 + v3

1
4

...
vm = 1 + v0

1
m + v1

1
m + v2

1
m + · · ·+ vm−1

1
m
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These are m+ 1 equations (including v0 and v1), which can be solved simultaneously:

v2 = 1 + v0
1
2 + v1

1
2 = 1 + 0 1

2 + 1 1
2 = 1 + 1

2

v3 = 1 + v0
1
3 + v1

1
3 + v2

1
3 = 1 + 0 1

3 + 1 1
3 + 1

3 (1 +
1
2 ) = 1 + 1

3 + ( 13 + 1
6 ) = 1 + 1

2 + 1
3

v4 = 1 + v0
1
4 + v1

1
4 + v2

1
4 + v3

1
4 = 1 + 0 1

4 + 1 1
4 + 1

4 (1 +
1
2 ) +

1
4 (1 +

1
2 + 1

3 ) = 1 + 1
2 + 1

3 + 1
4

...
vm = 1 + v0

1
m + v1

1
m + v2

1
m + · · ·+ vm−1

1
m = · · · = 1 + 1

2 + 1
3 + 1

4 + · · ·+ 1
m

Therefore, vm = E[T |X0 = m] = 1 +
1

2
+

1

3
+

1

4
+ · · ·+ 1

m
=

m∑
k=1

1

k
. Note that this result can be proved by induction.

(4.12) A Markov chain X0, X1, X2, . . . has the transition probability matrix

P =

0 1 2
0 0.3 0.2 0.5
1 0.5 0.1 0.4
2 0 0 1

and is known to start in state X0 = 0. Eventually, the process will end up in state 2. What is the probability that when
the process moves into state 2, it does so from state 1?

Solution: Following the hint, let T = min{n ≥ 0;Xn = 2}, and let

zi = Pr{XT−1 = 1|X0 = i} for i = 0, 1.

By First Step Analysis:

z0 = Pr{XT−1 = 1|X0 = 0}
=

∑
i

Pr{XT−1 = 1|X0 = 0, X1 = i}Pr{X1 = i|X0 = 0}, where i ∈ {0, 1, 2} law of total prob.

=
∑
i

Pr{XT−1 = 1|X0 = i}Pr{X1 = i|X0 = 0}, Markov Property

= Pr{XT−1 = 1|X1 = 0}Pr{X1 = 0|X0 = 0}+ Pr{XT−1 = 1|X1 = 1}Pr{X1 = 1|X0 = 0}+
Pr{XT−1 = 1|X1 = 2}Pr{X1 = 2|X0 = 0}

= 0.3z0 + 0.2z1 + 0 · 0.5 using the information on the transition matrix and previous def. also see (*)
= 0.3z0 + 0.2z1 simplifying

(*) Note that since we know that X0 = 0, and we condition on the event that X1 = 2, then T = 1 and thus:

Pr{XT−1 = 1|X1 = 2} = Pr{X1−1 = 1|X1 = 2} = Pr{X0 = 1|X1 = 2} = 0, since X0 = 0 and thus it is impossible that X0 = 1

Hence, z0 = 0.3z0 + 0.2z1 ⇒ z0 = 2
7z1. Now for z1:

z1 = Pr{XT−1 = 1|X0 = 1}
=

∑
i

Pr{XT−1 = 1|X0 = 1, X1 = i}Pr{X1 = i|X0 = 1}, where i ∈ {0, 1, 2} law of total prob.

=

( ∑
i∈{0,1}

Pr{XT−1 = 1|X0 = i}Pr{X1 = i|X0 = 0}

)
+ Pr{XT−1 = 1|X0 = 1, X1 = 2}Pr{X1 = 2|X0 = 1}, M. Property

= 0.5z0 + 0.1z1 + 1 · 0.4 using the information on the transition matrix and previous def. also see (**)

(**) Note that Pr{XT−1 = 1|X0 = 1, X1 = 2} = 1, since the event we are calculating its probability has already happened.
To see why, note that X1 = 2 imply that T = 1, and so:

Pr{XT−1 = 1|X0 = 1, X1 = 2} = Pr{X0 = 1|X0 = 1, X1 = 2} = 1

Hence, z1 = 0.5z0 + 0.1z1 + 0.4. Now we can solve this simultaneous system, replacing the first into the second equation:

z1 = 0.5(
2

7
z1) + 0.1z1 + 0.4 = z1(

1

7
+

1

10
) + 0.4 =

17

70
z1 + 0.4⇒ (1− 17

70
)z1 = 0.4⇒ z1 =

28

53

z0 =
2

7
· 28
53

=
8

53
= probability that when the process moves into state 2, it does so from state 1, knowing that X0 = 0
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(4.15) A simplified model for the spread of a rumor goes this way: There are N = 5 people in a group of friends, of which some
have heard the rumor and the others have not. During any single period of time, two people are selected at random from
the group and assumed to interact. The selection is such that an encounter between any pair of friends is just as likely as
between any other pair. If one of these persons has heard the rumor and the other has not, then with probability α = 0.1
the rumor is transmitted. Let Xn denote the number of friends who have heard the rumor at the end of the nth period.
Assuming that the process begins at time 0 with a single person knowing the rumor, what is the mean time that it takes
for everyone to hear it?

Solution: First, let us model this problem as a 5 state Markov chain with the following transition probability matrix:

P =

1 2 3 4 5
1 24/15 1/25 0 0 0
2 0 47/50 3/50 0 0
3 0 0 47/50 3/50 0
4 0 0 0 24/25 1/25
5 0 0 0 0 1

These probabilities were obtained as follow: first, state 5 is an absorbing state since all the friends know the rumor. Since
in our model the rumor can’t be "unknown" or "forgotten", only increments of one or no increments at all are allowed.
In state 1 we can spread the rumor to another friend with if we selected the friend that knows the rumor and another
friend times the probability α = 0.1 of spreading the rumor. This experiment follows a hypergeometric distribution where
k = 1 is the number of successes (I will consider a success selecting the only friend that knows the rumor). Hence, the
probability of selecting the friend that knows the rumor and another friend is(

1
1

)(
4
1

)(
5
2

) =
2

5
= probability of selecting the friend that knows the rumor plus another friend

Now, selecting this couple is not enough to spread the rumor, i.e., the rumor might or might not be spread with probability
α = 0.1. Hence P1,2 = 1

10
2
5 = 1

25 , i.e., the probability of spreading the rumor to a friend given that only one friend knows
the rumor. Moreover, the complement probability is the probability of not spreading the rumor given that only one friend
knows the rumor, i.e., P1,1 = 1− 1

25 = 24
25 .

Likewise, we can complete the table. Note that by symmetry of the binomial coefficient P1,2 = P4,5 and P2,3 = P3,4.
Therefore, P1,1 = 1− P1,2 = 1− P4,5 = P4,4 and P2,2 = 1− P2,3 = 1− P3,4 = P3,3. So we need only to compute:(

2
1

)(
3
1

)(
5
2

) =
3

5
= probability of selecting the friend that knows the rumor plus another friend

Considering the probability of spreading the rumor we have: P2,3 = 3
5

1
10 = 3

50 . Then, P3,3 = 1− 3
50 = 47

50 .

Now, let us perform first step analysis. Let T = min{n ≥ 0;Xn = 5} and vi = E[T |X0 = i] for i = 1, 2, 3, 4. Then:

v1 = 1 + 24
25v1 +

1
25v2 ⇒ v1 = 25 + v2

v2 = 1 + 47
50v2 +

3
50v3 ⇒ v2 = 50

3 + v3

v3 = 1 + 47
50v3 +

3
50v4 ⇒ v3 = 50

3 + v4

v4 = 1 + 24
25v4 ⇒ v4 = 25

First note that v5 = 0, since the expected time to spread the rumor given that it is already spread is 0.
Also, note that in each equation a 1 guarantees that we have to wait at least one more time period to further spread the
rumor. From the last equation we get that v4 = 25. Replacing this values in equation 3 we get: v3 = 50

3 + 24 = 125
3 , and

replacing values one after the other we obtain: v2 = 50
3 + 125

3 = 175
3 and v1 = 25 + 175

3 = 250
3 , and so, assuming that the

process begins at time 0 with a single person knowing the rumor, the mean time that it takes for everyone to hear it is:

v1 =
250

3

.
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