M463 Homework 7

Enrique Areyan
 June 26, 2013

(2.2) \#6 To estimate the percent of district voters who oppose a certain ballot measure, a survey organization takes a random sample of 200 voters from a district. If 45% of the voters in the district oppose the measure, estimate the chance that:
(Assume that all voters in the district are equally likely to be in the sample, independent of each other.)
a) exactly 90 voters in the sample oppose the measure.

Solution: Let $X=$ the number of people in the sample that oppose the measure. Note that X has a binomial distribution with $n=200$ and $p=0.45$ where p is the probability that a selected voter opposes the measure. In this setting we have:

$$
P(90 \text { successes in } 200 \text { trials })=P(X=90)=\binom{200}{90} 0.45^{90} 0.55^{110}=0.056631399
$$

We could have instead approximated this value using the normal distribution with the following parameters: $\mu=n p=200 \cdot 0.45=90$ and $\sigma=\sqrt{n p q}=7.03562364$. Hence,

$$
\begin{aligned}
P(X=90)=P(89.5 \leq X \leq 90.5) & =P(X \leq 90.5)-P(X \leq 89.5) \\
& =P\left(\frac{X-\mu}{\sigma} \leq \frac{90.5-90}{7.03562364}\right)-P\left(\frac{X-\mu}{\sigma} \leq \frac{80.5-90}{7.03562364}\right) \\
& \approx P(Z \leq 0.071066905)-P(Z \leq-0.071066905) \\
& =2 P(Z \leq 0.071066905)-1 \\
& =0.056655492
\end{aligned}
$$

Note that the error of the estimate is very small: $\epsilon=0.056655492-0.056631399=0.000024093$
b) more than half the voters in the sample oppose the measure.

Solution:

$P($ more than 100 successes in 200 trials $)=P(X>100)=\sum_{i=101}^{200}\binom{200}{i} 0.45^{i} 0.55^{200-i}=0.06807525$
Again, we could have instead approximated this value using the normal distribution with the same parameters as before. Hence,

$$
\begin{aligned}
P(X>100)=1-P(X \leq 100) & =1-P\left(\frac{X-\mu}{\sigma} \leq \frac{100.5-90}{7.03562364}\right) \\
& \approx P(Z \leq 1.492405014) \\
& =0.067796501
\end{aligned}
$$

In this case the error of the estimate is also very small: $\epsilon=0.06807525-0.067796501=0.000278749$

