M463 Homework 2

Enrique Areyan
 June 19, 2013

1.3.4 Let $\Omega=\{0,1,2\}$ be the outcome space in a model for tossing a coin twice and observing the total number of heads. Then:
a) Yes, the event that the coin does not land head both times is $E=\{0\}$
b) Yes, the event that on one toss the coin land heads and on the other toss it lands tails is $E=\{0\}$
c) No, since there is no notion of tosses order in Ω.
d) Yes, the event that the coin lands head at least once $E=\{1,2\}$
1.3.10. Let A, B, and C be events defined in an outcome space. Then:
a)
$P($ exactly two of A, B, C occurs $)=P(A B$ only or $A C$ only or $B C$ only $)$

$$
\begin{aligned}
& =[P(A B)-P(A B C)]+[P(A C)-P(A B C)]+[P(B C)-P(A B C)] \\
& =P(A B)+P(A C)+P(B C)-3 P(A B C)
\end{aligned}
$$

b)

$$
\begin{aligned}
P(\text { exactly one of } A, B, C \text { occurs }) & =P(A \text { only or } B \text { only or } C \text { only }) \\
& =[P(A)-P(A B)-P(A C)+P(A B C)] \\
& +[P(B)-P(A B)-P(B C)+P(A B C)] \\
& +[P(C)-P(C B)-P(A C)+P(A B C)] \\
& =P(A)+P(B)+P(C)-2[P(A B)+P(A C)+P(B C)]+3 P(A B C)
\end{aligned}
$$

c)
$P($ none one of A, B, C occurs $)=1-P($ some event A, B, C occurs $)$

$$
\begin{aligned}
& =1-P(A \cup B \cup C) \\
& =1-[P(A)+P(B)+P(C)-P(A B)-P(A C)-P(B C)+P(A B C)] \\
& =1-P(A)-P(B)-P(C)+P(A B)+P(A C)+P(B C)-P(A B C)
\end{aligned}
$$

