M463 Homework 16

Enrique Areyan
 July 18, 2013

A Geiger counter is recording background radiation at an average rate of one hit per minute. Let T_{3} be the time in minutes when the third hit occurs after the counter is switch on. Find $P\left(2 \leq T_{3} \leq 4\right)$.

Solution: T has Gamma distribution with parameters $\lambda=\frac{1 \text { hit }}{\min }$ and $r=3$. Therefore:

$$
P\left(2 \leq T_{3} \leq 4\right)=\int_{2}^{4} \frac{e^{-t} t^{2}}{2!} d t=\frac{1}{2} \int_{2}^{4} e^{-t} t^{2} d t
$$

Applying Integration by parts twice to : $\int e^{-t} t^{2} d t$

$$
\begin{aligned}
\int e^{-t} t^{2} d t=2 \int e^{-t} t d t-t^{2} e^{-t} & =2\left(-e^{-t}-t e^{-t}\right)-t^{2} e^{-t} \\
\text { Therefore, since }: \frac{1}{2} \int e^{-t} t^{2} d t & =-\frac{1}{2}\left[e^{-t} t^{2}+2 t e^{-t}+2 e^{-t}\right] \\
P\left(2 \leq T_{3} \leq 4\right)=-\frac{1}{2}\left[e^{-t} t^{2}+2 t e^{-t}+2 e^{-t}\right]_{2}^{4} & =-\frac{1}{2}\left[\left(16 e^{-4}+8 e^{-4}+2 e^{-4}\right)-\left(4 e^{-2}+4 e^{-2}+2 e^{-2}\right)\right] \\
& =-\frac{1}{2}\left[26 e^{-4}-10 e^{-2}\right] \\
& =5 e^{-2}-13 e^{-4} \\
& =0.43857
\end{aligned}
$$

