## M463 Homework 15

## Enrique Areyan

## July 17, 2013

Suppose $X$ with values $(0,1)$ has density $f(x)=c x^{2}(1-x)^{2}$ for $0<x<1$. Find:
a) the constant $c$;

Solution: The density function must satisfy:

$$
\int_{0}^{1} f(x) d x=1 \Rightarrow \int_{0}^{1} c x^{2}(1-x)^{2} d x=1 \Rightarrow c \int_{0}^{1} x^{2}-2 x^{3}+x^{4} d x=1 \Rightarrow c\left[\frac{x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}\right]_{0}^{1}=1 \Rightarrow c=30
$$

b) $E(X)$;

Solution: By definition:

$$
E(X)=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x 30 x^{2}(1-x)^{2} d x=30 \int_{0}^{1} x^{3}-2 x^{4}+x^{5} d x=30\left[\frac{x^{4}}{4}-2 \frac{x^{5}}{5}+\frac{x^{6}}{6}\right]_{0}^{1}=30\left[\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right]=\frac{1}{2}
$$

c) $\operatorname{Var}(X)$;

Solution: First compute the second moment of $X$ :

$$
E\left(X^{2}\right)=\int_{0}^{1} x^{2} f(x) d x=\int_{0}^{1} x^{2} 30 x^{2}(1-x)^{2} d x=30 \int_{0}^{1} x^{4}-2 x^{5}+x^{6} d x=30\left[\frac{x^{5}}{5}-\frac{x^{6}}{3}+\frac{x^{7}}{7}\right]_{0}^{1}=30\left[\frac{1}{5}-\frac{1}{3}+\frac{1}{7}\right]=\frac{2}{7}
$$

Hence,

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}=\frac{2}{7}-\frac{1}{4}=\frac{1}{28}
$$

