M463 Homework 12

Enrique Areyan
 July 9, 2013

Suppose you have $\$ 100,000$ to invest in stocks. If you invest $\$ 1000$ in any particular stock your profit will be $\$ 200, \$ 100$ or $\$ 100$ (a loss), with probability 0.25 each. There are 100 different stocks you can choose from, and they all behave independently of each other. Consider the two cases: (1) Invest $\$ 100,000$ in one stock. (2) Invest $\$ 1000$ in each of 100 stocks.
a) For case (1) find the probability that your profit will be $\$ 8000$ or more.

Solution: Let $X=$ profit in one particular stock. The following table summarizes the data for X.

x	$P(X=x)$	$x P(X=x)$	$x^{2} P(X=x)$
200	$1 / 4$	50	10,000
100	$1 / 4$	25	2,500
0	$1 / 4$	0	0
-100	$1 / 4$	-25	2,500

Hence, $E(X)=50$ and $\operatorname{Var}(X)=15,000-2,500=12,500 \Rightarrow S . D .(X)=111.8033989$.
Note that If you invest $\$ 100,000$ in one particular stock, this is equivalent to buying 100 shares of that stock. Your profit is then giving by $Y=100 X=$ profit on 100 shares of one particular stock. Y is completely given by X

x	y	$P(Y=y)$
200	20,000	$1 / 4$
100	10,000	$1 / 4$
0	0	$1 / 4$
-100	$-10,000$	$1 / 4$

So, $P(Y \geq 8,000)=P(Y=10,000$ or $Y=20,000)=P(Y=10,000)+P(20,000)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$
b) Do the same for case (2).

Solution: Let $S_{100}=X_{1}+X_{2}+\cdots+X_{100}$ be the profit in 100 different, independent stocks. We can approximate the probability $P\left(S_{100} \geq 8000\right)$ using the normal distribution. By the Central Limit Theorem, S_{100} is approximately normal with mean $E\left(S_{100}\right)=100 \cdot E\left(X_{i}\right)=100 \cdot 50=5,000$ and standard deviation $S . D\left(S_{100}\right)=\sqrt{100} S D\left(X_{i}\right)=10 \cdot 111.8033989=1,118.033989$. Hence:

$$
\begin{aligned}
P\left(S_{100} \geq 8,000\right)=1-P\left(S_{100}<8,000\right) & =1-P\left(\frac{S_{100}-n E\left(X_{i}\right)}{\sqrt{n} S D\left(X_{i}\right)}<\frac{8,000-5,000}{1,118.033989}\right) \\
& \approx 1-P(Z \leq 2.683281573) \\
& =1-\Phi(2.683281573)=0.003645179
\end{aligned}
$$

