M463 Homework 11

Enrique Areyan
 July 8, 2013

Let A_{1}, A_{2}, and A_{3} be events with probabilities $\frac{1}{5}, \frac{1}{4}$, and $\frac{1}{3}$, respectively. Let N be the number of these events that occur.
a) Write down a formula for N in terms of indicators.

Solution: Let I_{i} be defined as:

$$
I_{i}=\left\{\begin{array}{l}
1 \text { if event } A_{i} \text { occurs } \\
0 \text { otherwise }
\end{array}\right.
$$

for $i=1,2,3$. Then

$$
N=I_{1}+I_{2}+I_{3}
$$

b) Find $E(N)$.

Solution: Since I_{i} are indicators R.V.s, we have that $E\left(I_{1}\right)=\frac{1}{5}, E\left(I_{2}\right)=\frac{1}{4}$, and $E\left(I_{3}\right)=\frac{1}{3}$.
By linearity of expected value: $E(N)=E\left(I_{1}+I_{2}+I_{3}\right)=E\left(I_{1}\right)+E\left(I_{2}\right)+E\left(I_{3}\right)=\frac{1}{5}+\frac{1}{4}+\frac{1}{3}=$ $\frac{12+15+20}{60}=\frac{47}{60}$

In each of the following cases, calculate $\operatorname{Var}(N)$:
c) A_{1}, A_{2}, A_{3} are disjoint;

Solution:

$$
\begin{aligned}
\operatorname{Var}(N) & =\operatorname{Var}\left(I_{1}+I_{2}+I_{3}\right) & & \text { By Def. of } N \\
& =E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right]-\left[E\left(I_{1}+I_{2}+I_{3}\right)\right]^{2} & & \text { Computational formular for Var }
\end{aligned}
$$

The second term of this expression is $\left[E\left(I_{1}+I_{2}+I_{3}\right)\right]^{2}=E(N)^{2}=\left(\frac{47}{60}\right)^{2}=\frac{2209}{3600}$.
The first term is slightly more complicated to compute:

$$
\begin{aligned}
E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right] & =E\left[I_{1}^{2}+I_{2}^{2}+I_{3}^{2}+2 I_{1} I_{2}+2 I_{1} I_{3}+2 I_{2} I_{3}\right] & & \text { Squaring inside } E \\
& \left.=E\left(I_{1}^{2}\right)+E\left(I_{2}^{2}\right)+E\left(I_{3}^{2}\right)+2 E\left(I_{1} I_{2}\right)+2 E\left(I_{1} I_{3}\right)+2 E\left(I_{2} I_{3}\right)\right] & & \text { Linearity of } E \\
& \left.=E\left(I_{1}\right)+E\left(I_{2}\right)+E\left(I_{3}\right)+2 E\left(I_{1} I_{2}\right)+2 E\left(I_{1} I_{3}\right)+2 E\left(I_{2} I_{3}\right)\right] & & \text { Idempotence of } I_{i}
\end{aligned}
$$

But, $I_{i} I_{j}=I_{i \cap j}$, so $P\left(I_{i \cap j}=1\right)=0$ since events are mutually disjoint. So, $E\left(I_{i} I_{j}\right)=0$.
Hence, $E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right]=E\left(I_{1}\right)+E\left(I_{2}\right)+E\left(I_{3}\right)=E(N)=\frac{47}{60}$. Combining these two expressions:

$$
\operatorname{Var}(N)=E(N)-E(N)^{2}=\frac{47}{60}-\frac{2209}{3600}=\frac{611}{3600}
$$

d) they are independent;

Solution: Note that $\operatorname{Var}\left(I_{1}\right)=p q=\frac{1}{5} \cdot \frac{4}{5}=\frac{4}{25}$. Likewise, $\operatorname{Var}\left(I_{2}\right)=\frac{3}{16}$, and $\operatorname{Var}\left(I_{3}\right)=\frac{2}{9}$.
By independence, $\operatorname{Var}(N)=\operatorname{Var}\left(I_{1}+I_{2}+I_{3}\right)=\operatorname{Var}\left(I_{1}\right)+\operatorname{Var}\left(I_{2}\right)+\operatorname{Var}\left(I_{3}\right)=\frac{4}{25}+\frac{3}{16}+\frac{2}{9}=\frac{2051}{3600}$
c) $A_{1} \subset A_{2} \subset A_{3}$.

Solution: We proceed as we did for part c).

$$
\begin{aligned}
\operatorname{Var}(N) & =\operatorname{Var}\left(I_{1}+I_{2}+I_{3}\right) & & \text { By Def. of } N \\
& =E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right]-\left[E\left(I_{1}+I_{2}+I_{3}\right)\right]^{2} & & \text { Computational formular for Var }
\end{aligned}
$$

The second term was previously computed in c).
For the first term:

$$
E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right]=E\left(I_{1}\right)+E\left(I_{2}\right)+E\left(I_{3}\right)+2 E\left(I_{1} I_{2}\right)+2 E\left(I_{1} I_{3}\right)+2 E\left(I_{2} I_{3}\right) \quad \text { Previous calculation }
$$

But, $I_{1} I_{2}=I_{1}$ since $A_{1} \subset A_{2}$. Likewise, $I_{1} I_{3}=I_{1}$ since $A_{1} \subset A_{3}$ and $I_{2} I_{3}=I_{2}$ since $A_{2} \subset A_{3}$. Hence,

$$
\begin{aligned}
E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right] & =E\left(I_{1}\right)+E\left(I_{2}\right)+E\left(I_{3}\right)+2 E\left(I_{1} I_{2}\right)+2 E\left(I_{1} I_{3}\right)+2 E\left(I_{2} I_{3}\right) \\
& =5 E\left(I_{1}\right)+3 E\left(I_{2}\right)+E\left(I_{3}\right) \\
& =\frac{5}{5}+\frac{3}{4}+\frac{1}{3}=\frac{60+45+20}{60}=\frac{125}{60}=\frac{25}{12}
\end{aligned}
$$

Finally,

$$
\operatorname{Var}(N)=E\left[\left(I_{1}+I_{2}+I_{3}\right)^{2}\right]-E(N)^{2}=\frac{25}{12}-\frac{2209}{3600}=\frac{5291}{3600}
$$

