M463 Homework 10

Enrique Areyan
 July 5, 2013

A building has 10 floors above the basement. If 12 people get into an elevator at the basement, and each chooses a floor at random to get out, independently of the others, at how many floors do you expect the elevator to make a stop to let out one or more people of these 12 people?

Solution:

Let $Y=$ number of floors the elevator stops at. Then, $Y=X_{1}+X_{2}+\cdots+X_{10}$, where:

$$
X_{i}=\left\{\begin{array}{l}
1 \text { if the elevator stops at the } i \text { th floor } \\
0 \text { otherwise }
\end{array}\right.
$$

Note that the probability of a single person getting out in any floor is $p=\frac{1}{10}$. The distribution of X_{i} is:

$$
\begin{aligned}
P\left(X_{i}=1\right)=P(\text { at least one person gets out at floor } i t h) & =1-P(\text { no one gets out at floor } i t h) \\
& =1-\binom{12}{0}\left(\frac{1}{10}\right)^{0}\left(\frac{9}{10}\right)^{12} \\
& =1-\left(\frac{9}{10}\right)^{12}
\end{aligned}
$$

Therefore, $E\left(X_{i}\right)=1-\left(\frac{9}{10}\right)^{12}$ for $1 \leq i \leq 10$. Now, by linearity of the expected value:
$E(Y)=E\left(X_{1}+X_{2}+\cdots+X_{10}\right)=E\left(X_{1}\right)+E\left(X_{2}\right)+\cdots+E\left(X_{10}\right)=10 \times\left[1-\left(\frac{9}{10}\right)^{12}\right]=7.17570463519$
Hence, we would expect the elevator to make a stop to let out one or more people approximately at 7.176 floors.

