Math Finance 3-3-15
Monday, March 2, 2015 10:52 PM

Recall we had B.M. $W(t)$ with drift $\mu \&$ vol. σ ($\omega(t)-\omega(s)$ was normal R.v. with mean $\mu(t-s)$ var. $\left.\sigma^{2}(t-s)\right)$

Now we eneralize to a process $\left\{X_{t}\right\}$ where both μ and σ can vary with t. Suppose:

$$
\begin{aligned}
X_{t}-X_{s} \text { hes mean } & =\int_{s}^{t} \mu(r) d r \text { and } \\
\text { var } & =\int_{s}^{t}(\sigma(r))^{2} d r .
\end{aligned}
$$

(original case was $\mu(r) \equiv \mu \quad \sigma(r) \equiv \sigma$.) recall $X_{t+h}-X_{t} \xrightarrow{h \rightarrow 0} 0$ but not us fast as h so $\frac{X_{t+h}-X_{t}}{h}$ blows up
so not diff. but

$$
\left.\begin{array}{rl}
X_{t+h} & -X_{t}=\int_{t}^{t+h} \mu(r) d r+\left(\int_{t}^{t+h} \sigma(r)^{2} d r\right)^{1 / 2} Z_{0,1} \\
& =h \mu(t)+\int_{t}^{t+h}(\mu(r)-\mu(t)) d r+\sqrt{h} \sigma(t) Z_{0,1} \\
(\underbrace{\left(h \sigma^{2}(t)+\int_{t}^{t+h}\left(\sigma^{2}(r)-\sigma^{2}(t)\right) d r\right.}_{g(t, h)})^{1 / 2}-\sqrt{h} \sigma(t)
\end{array} Z_{0,1}\right)
$$

$$
\widetilde{g(t, h)}
$$

Now $g(t, h)=\sqrt{h} \sigma(t)\left(\left(1+\frac{1}{h} \int_{t}^{t+h}\left(\frac{\sigma^{2}(r)}{\sigma^{2}(t)}-1\right) d r\right)^{1 / 2}-1\right)$ and suppose $\left|\sigma^{2}(r)-\sigma^{2}(t)\right| \leqslant(r-t)^{\alpha} C \sigma^{2}(t)$
then

$$
\begin{aligned}
g(t, h) & \leqslant \sqrt{h} \sigma(t)\left(\left(1+\frac{c}{h} \int_{t}^{t+h}(r-t)^{\alpha} d r\right)^{1 / 2}-1\right) \\
& =\sqrt{h} \sigma(t)\left(\left(1+\frac{c h^{\alpha+t}}{h(\alpha+1)}\right)^{1 / 2}-1\right) \\
& \approx \sqrt{h} \sigma(t) \frac{C h^{\alpha}}{2 \alpha} \cdot \text { So for } \alpha>1 / 2
\end{aligned}
$$

this converge to 0 as $h \rightarrow 0$ faster then h similarly $\int_{t}^{t+h} \mu(r)-\mu(t) d r \xrightarrow{h \rightarrow 0} 0$ faster thar h if $\mu(t)$ continuous. So if $\mu \in C^{0}\left\{\sigma^{2} \in C^{1 / 2+\varepsilon}\right.$ We have: (*)

$$
x_{t+h}-x_{t}-h \mu(t)-\sqrt{h} \sigma(t) Z_{0,1} \text { is } o(h)
$$

Def If X_{t} satisfies * then we say
X_{t} satisfies the stochastic differential equations

$$
d X=\mu(t) d t+\sigma(t) d W_{t}
$$

(here W_{t} is the B.M. with drift 0 ह vol $\sigma=1$) Such a stochastic process is called an Ito process

Such a stochastic process is culled an Ito process

Ex If $\sigma(t) \equiv 0$ then $d X_{t}=\mu(t) d t$ means $\lim _{h \rightarrow 0} \frac{X_{t+h}-X_{t}-h \mu(t)}{h}=0$ or $\lim _{h \rightarrow 0} \frac{x_{t+h}-x_{t}}{h}=\mu(t)$

$$
\text { or } \frac{d X_{t}}{d t}=\mu(t)
$$

(usual derivative exists)
If we have a function $f(x, t) \in C^{\prime}$ and X_{t} is an Ito process with $\sigma \equiv 0$ (so X_{t} also differentiable) then we can write usual multivariate chain-rule

$$
\text { as: } \frac{d}{d t}\left(f\left(X_{t}, t\right)\right)=\frac{\partial f}{\partial x}\left(X_{t}, t\right) \mu(t)+\frac{\partial f}{\partial t}\left(x_{t}, t\right)
$$

Q: But what about when $\sigma(t) \neq 0$?
Answer:
The (Itô's Lemma) Let X_{t} be an Ito process with

$$
d X_{t}=\mu(t) d t+\sigma(t) d \omega_{t} \text { and }
$$

$f(x, t)$ a C^{2} function. Then $f(x, t)$ is an Itô process with

$$
\begin{aligned}
d\left(f\left(x_{z}, t\right)\right) & =\frac{\partial f}{\partial t} d t+\frac{\partial f}{\partial x}\left(x_{t}, t\right) d x_{t}+\frac{\partial^{2} f}{\partial x^{2}}\left(x_{t}, t\right) \frac{\sigma^{2}(t)}{2} d t \\
& =\left(\frac{\partial f}{\partial t}\left(x_{t}, t\right)+\frac{\partial f}{\partial x}\left(x_{+} t\right) \mu(t)+\frac{\partial^{2} f}{\partial x^{2}}\left(x_{t}+t\right) \frac{\sigma^{2}(t)}{2}\right) d t+\frac{\partial f}{\partial x} \sigma(t) d W_{t}
\end{aligned}
$$

Ex $S_{t}=S_{0} e^{X_{t}}$ then $f(x, t)=S_{0} e^{x}$

$$
\begin{aligned}
d\left(S_{t}\right) & =\left(O+\mu(t) S_{0} e^{X_{t}}+\frac{\sigma^{2}(t)}{2} S_{0} e^{X_{t}}\right) d t+\sigma(t) S_{0} e^{X_{t}} d W_{t} \\
& =\left(\mu(t)+\frac{\left.\sigma^{2}(t)\right)}{2} S_{t} d t+\sigma(t) S_{t} d W_{t}\right.
\end{aligned}
$$

Pf (of Thy) By f being twice diff. we have:

$$
\begin{aligned}
& f\left(x_{t+h}, t+h\right)-f\left(x_{t}, t\right)=\frac{\partial f}{\partial t}\left(x_{t}, t\right) \cdot h+ \\
& \frac{\partial f}{\partial x}\left(x_{t}, t\right)\left(x_{t+h}-x_{t}\right)+\frac{\partial f}{\partial x^{2}}\left(x_{t}, t\right) \frac{\left(x_{t+h}-x_{t}\right)^{2}}{2} \\
& \quad+O\left(\left(x_{t+h}-x_{t}\right)^{3}, h^{2}\right) \quad \text { (Taylor Series) }
\end{aligned}
$$

but $X_{t+h}-X_{t}$ is $\mu(t) h+\sqrt{h} \sigma(t) Z_{\text {on }}$
so $\left(X_{t+h}-X_{t}\right)^{2}=\mu^{2} h^{2}+2 \mu(t) v(t) h^{3 / 2} Z_{0,1}+h \sigma^{2} Z_{0,1}^{2}$
Now $Z_{0,1}^{2}$ still has mean $\int_{-\infty}^{\infty} \frac{x^{2}}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x=1$
On the other hand $\left.\operatorname{Var}\left(h \sigma^{2} z_{0,1}^{2}\right)=h^{2} \sigma^{4} \cdot \operatorname{Var}\left(z_{\beta}^{2}\right)^{7}\right]^{8}$ and so it is $O(h)$-ie. it goes like h^{β} for $\beta>1$. Similarly all other moments are $O(h)$ also. Since $\mu(t)^{2} h^{2}$ and $2 \mu(t) \sigma(t) h^{3 / 2}$ are $o(h)$ the only term that is not is the mean $h v(t)^{2}$.
This leaves:

$$
\begin{aligned}
& f\left(x_{t+h}, t+h\right)-f\left(x_{t}, t\right)=\frac{\partial f}{\partial t}\left(x_{t}, t\right) h+ \\
& \quad \frac{\partial f}{\partial x}\left(x_{t}, t\right) \mu(t) h+\frac{\partial f}{\partial x}\left(x_{t}, t\right) \sqrt{h} \sigma(t) z_{0,1}+\frac{\partial^{2} f}{\partial x^{2}}\left(x_{t}, t\right) \frac{h \sigma^{2}}{2} \\
& \quad+o(h)
\end{aligned}
$$

Now $Z_{0,1}=\frac{1}{\sqrt{h}}\left(W_{t+h}-W_{t}\right)$ so we get

$$
\begin{aligned}
f\left(X_{t+h}, t+h\right)-f\left(x_{+1} t\right) & =\frac{\partial f}{\partial t} h+\frac{\partial f}{\partial x}\left(\mu(t) h+\sigma(t)\left(w_{t+w}-w_{z}\right)\right) \\
& +\frac{\partial^{2} f}{\partial x^{2}} h \frac{\sigma^{2}}{2} \quad \text { letting } h \rightarrow d t \\
d f\left(x_{t}, t\right)= & \left(\frac{\partial f}{\partial t}+\frac{\partial f}{\partial x} \mu(t)\right) d t+\frac{\partial f}{\partial x} v(t) d w_{t}+\frac{\sigma^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}} d t
\end{aligned}
$$

We can now derive Black-Scholes egn. If $f(x, t)=C\left(s_{0} e^{x}, t\right)$, where here t is the time the option is purchased, not the expiry T, then $f\left(x_{t}, t\right)=C\left(S_{0} e^{x_{t}}, t\right)$
$=C\left(S_{t}, t\right)$ If you apply It oo's Lemma then in you homework you will show that (after rewriting everything in terms of $S_{t}=S_{0} e^{x_{t}}$) you obtain:

$$
d C=\frac{d C}{d t} d t+\frac{\partial C}{\partial S} d S+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}} d t
$$

by Ito.
Consider a portfolio of the option $\&$ a stocks.

$$
\begin{aligned}
d(C+\alpha S)= & \left(\frac{\partial C}{\partial t}+\mu S \frac{\partial C}{\partial S}+\frac{1}{2} \sigma^{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}+\alpha \mu S\right) d t \\
& +\left(\sigma S \frac{\partial C}{\partial S}+\alpha \sigma S\right) d w_{t}
\end{aligned}
$$

set $\alpha=-\frac{\partial C}{\partial S} \quad(\Delta$-hedge $)$ then
the coefficient of the $d \omega_{t}$ term becomes zero so this portfolio is riskless and completely deterministic. Therefore its drift must be $r(C+\alpha S)$ or in other words oven time it's value is $e^{r t}(c+\alpha S)$
so $\frac{d}{d t}(C+\alpha S)=r(C+\alpha S)$ and so
gives: $\quad r\left(C-S \frac{\partial C}{\partial S}\right)=\frac{\partial C}{\partial t}+\frac{\mu S \frac{\partial C}{\partial S}+\frac{\sigma^{2} S^{2}}{2} \frac{\partial^{2} C}{\partial S^{2}} \text {. } n(C)}{\partial S}$

$$
-S_{H} \frac{\partial x}{\partial s}
$$

$$
\stackrel{\text { or }}{=} \frac{\partial C}{\partial t}=r C-r S \frac{\partial C}{\partial S}-\frac{v^{2}}{2} S^{2} \frac{\partial^{2} C}{\partial S^{2}}
$$

This is an ordinary PDE which can be solved directly.
(Remember here $S=S_{t} \sigma=\sigma(t)$ and $r=r(t)$ may depend on t, and even S_{t})
This $C\left(S_{+}, t\right)$ is the call price at time t
so in terms of owe former naming of the call price © time O which we called $C\left(S_{0}, k, T, r, \sigma\right)$ we hare

$$
C\left(S_{t}, t\right)=\underset{\uparrow}{C\left(S_{t}, K, T-t, r, \sigma\right)}
$$

but we only derived the formula for this when σ is constant.

