M451 -Introduction to Mathematical Finance - Homework 1

Enrique Areyan
January 20, 2015

Chapter 1

(2) A family picnic scheduled for tomorrow will be postponed if it is either cloudy or rainy. If the probability that it will be cloudy is .40 , the probability that it will be rainy is .30 , and the probability that it will be both rainy and cloudy is .20 , what is the probability that the picnic will not be postponed?

Solution: Let C denote the event that it is cloudy tomorrow and let R denote the event that it is rainy tomorrow.
Note that the picnic will be either postponed or not, i.e., these are complementary events. Therefore:

$$
\begin{aligned}
P(\text { picnic will not be postponed }) & =1-P(\text { picnic will be postponed }) \\
& =1-P(\text { it is either cloudy or rainy }) \\
& =1-P(C \cup R) \\
& =1-[P(C)+P(R)-P(C \cap R)] \\
& =1-[.40+.30-.20] \\
& =1-.5 \\
& =.5
\end{aligned}
$$

complement rule
definition of picnic postponed using letters for the events addition rule
replacing for probabilities arithmetic

Hence, the probability that the picnic will not be postponed is .5
(4) A club has 120 members, of whom 35 play chess, 58 play bridge, and 27 play both chess and bridge. If a member of the club is randomly chosen, what is the conditional probability that she:
(a) plays chess given that she plays bridge;
(b) plays bridge given that she plays chess?

Solution: Let C and B denote the event that the randomly chosen player plays chess and bridge respectively. Then:
(a)

$$
P(C \mid B)=\frac{P(C \cap B)}{P(B)}=\frac{\frac{27}{120}}{\frac{58}{120}}=\frac{27}{58}
$$

(b)

$$
P(B \mid C)=\frac{P(B \cap C)}{P(C)}=\frac{\frac{27}{120}}{\frac{35}{120}}=\frac{27}{35}
$$

(7) If A and B are independent, show that so are
(a) A and B^{c}
(b) A^{c} and B^{c}

Solution: That events A and B are independent means that $P(A \cap B)=P(A) \cdot P(B)$. Hence,
(a)

$$
\begin{aligned}
P(A) \cdot P\left(B^{c}\right) & =P(A)[1-P(B)] & & \text { by complement rule } \\
& =P(A)-P(A) P(B) & & \text { distributing } \\
& =P(A)-P(A \cap B) & & \text { by hypothesis } A \text { and } B \text { are independent } \\
& =P\left(A \cap B^{c}\right) & & \text { Since } P(A)=P(A \cap B)+P\left(A \cap B^{c}\right)
\end{aligned}
$$

Therefore, $P(A) \cdot P\left(B^{c}\right)=P\left(A \cap B^{c}\right)$, which shows that A and B^{c} are independent.
(b)

$$
\begin{aligned}
P\left(A^{c}\right) \cdot P\left(B^{c}\right) & =[1-P(A)][1-P(B)] & & \text { by complement rule } \\
& =1-P(B)-P(A)+P(A) P(B) & & \text { distributing } \\
& =1-P(B)-P(A)+P(A \cap B) & & \text { by hypothesis } A \text { and } B \text { are independent } \\
& =1-[P(A)+P(B)-P(A \cap B)] & & \text { rearranging terms } \\
& =1-P(A \cup B) & & \text { addition rule } \\
& =P\left((A \cup B)^{c}\right) & & \text { complement rule } \\
& =P\left(A^{c} \cap B^{c}\right) & & \text { De Morgan's law }
\end{aligned}
$$

Therefore, $P\left(A^{c}\right) \cdot P\left(B^{c}\right)=P\left(A^{c} \cap B^{c}\right)$, which shows that A^{c} and B^{c} are independent.
(8) A gambling book recommends the following strategy for the game of roulette. It recommends that the gambler bet 1 on red. If red appears (which has probability $18 / 38$ of occurring) then the gambler should take his profit of 1 and quit. If the gambler loses this bet, he should then make a second bet of size 2 and then quit. Let X denote the gambler's winnings.
(a) Find $P\{X>0\}$
(b) Find $E[X]$

Solution: Let us construct a table to completely describe X. Note that we assume independence of each play.

$x(\$)$	$P(X=x)$	$x \cdot P(X=x)$
0	$(1-18 / 38)^{2}$	0
1	$18 / 38$	$18 / 38$
2	$(1-18 / 38) \cdot 18 / 38$	$2 \cdot 20 / 38 \cdot 18 / 38$

Form the table we can compute what we want:
(a) $P\{X>0\}=P(X=1$ OR $X=2)=P(X=1)+P(X=2)=18 / 38+20 / 38 \cdot 18 / 38=18 / 38 \cdot(1+20 / 38)=$ $18 / 38 \cdot 58 / 38=261 / 361 \approx 72.30 \%$
(b) $E[X]=0+18 / 38+2 \cdot 20 / 38 \cdot 18 / 38=76 / 38=351 / 361 \approx 0.9723 \$$
(9) Four buses carrying 152 students from the same school arrive at a football stadium. The buses carry (respectively) 39, 33,46 , and 34 students. One of the 152 students is randomly chosen. Let X denote the number of students who were on the bus of the selected student. One of the four bus drivers is also randomly chosen. Let Y be the number of students who were on that driver's bus. Find $E[X]$ and $E[Y]$.

Solution: Let us construct a table to completely describe X and Y.

x	$P(X=x)$	$x \cdot P(X=x)$
39	$39 / 152$	$39^{2} / 152$
33	$33 / 152$	$33^{2} / 152$
46	$46 / 152$	$46^{2} / 152$
34	$34 / 152$	$34^{2} / 152$

y	$P(Y=y)$	$y \cdot P(Y=y)$
39	$1 / 4$	$39 / 4$
33	$1 / 4$	$33 / 4$
46	$1 / 4$	$46 / 4$
34	$1 / 4$	$34 / 4$

Hence, $E[X]=\frac{39^{2}+33^{2}+46^{2}+34^{2}}{152}=\frac{2941}{76} \approx 38.70$ and $E[Y]=\frac{39+33+46+34}{4}=\frac{152}{4}=38$
(11) Verify that

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}
$$

Hint: Starting with the definition

$$
\operatorname{Var}(X)=E\left[(X-E[X])^{2}\right]
$$

square the expression on the right side; then use the fact that the expected value of a sum of random variables is equal to the sum of their expectations.

Solution:

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-E[X])^{2}\right] & & \text { by definition } \\
& =E\left[X^{2}-2 X E[X]+E[X]^{2}\right] & & \text { squaring } \\
& =E\left[X^{2}\right]-2 E[X E[X]]+E\left[E[X]^{2}\right] & & \text { by linearity of the expected value } \\
& =E\left[X^{2}\right]-2 E[X] E[X]+E[X]^{2} & & \text { since the expectation of a constant is the constant itself } \\
& =E\left[X^{2}\right]-2 E[X]^{2}+E[X]^{2} & & \text { algebra } \\
& =E\left[X^{2}\right]-E[X]^{2} & & \text { arithmetic }
\end{aligned}
$$

(12) A lawyer must decide whether to charge a fixed fee of $\$ 5,000$ or take a contingency fee of $\$ 25,000$ if she wins the case (and 0 if she loses). She estimates that her probability of winning is .30. Determine the mean and standard deviation of her fee if
(a) she takes the fixed fee;
(b) she takes the contingency fee.

Solution:

(a) If she takes the fixed fee then the mean of her fee is $\$ 5,000$ and the standard deviation is 0 . In this case there is no randomness since she takes the fee regardless of the outcome of the case.
(b) If she takes the contingency fee, then let $X=$ amount in dollars of the received fee. The distribution of X is given by the following table:

x	$P(X=x)$	$x \cdot P(X=x)$
0	$7 / 10$	0
25,000	$3 / 10$	7,500

Therefore, the mean or expected value of her fee is $E[X]=7,500$.
The variance is given by $\sum_{i=1}^{2} p_{i} \cdot\left(x_{i}-E[X]\right)^{2}=\left[7 / 10 \cdot(0-7,500)^{2}\right]+\left[3 / 10 \cdot(25,000-7,500)^{2}\right]=131250000$.
From which we conclude that the standard deviation is $\sqrt{131250000} \approx \$ 11,456.44$.
(19) Can you construct a pair of random variables such that $\operatorname{Var}(X)=\operatorname{Var}(Y)=1$ and $\operatorname{Cov}(X, Y)=2$?.

Solution:

Chapter 2

(2)

Solution:

