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Let us start by discussing an example.
Consider the Markov Chain with 4 states whose transition probability matrix is given by:

P =

1 2 3 4
1 1/2 0 0 1/2
2 0 1/3 7/10 0
3 0 2/10 8/10 0
4 1/10 0 0 9/10

If we try to find for the long-term fraction of time spend in each state by solving wP = w directly, i.e., finding the left
eigenvector with eigenvalue 1, we will get (using mathematica):

Eigenvectors@Transpose [P ]
{{1/5 , 0 , 0 , 1} , {0 , 2/7 , 1 , 0} , {−1, 0 , 0 , 1} , {0 , −1, 1 , 0}}

Eigenvalues@Transpose [P ]
{1 , 1 , 2/5 , 1/10}

First note that eigenvectors that change signs cannot possibly be normalized to provide a probability distribution so ig-
nore these. We can see that there are two possible left eigenvectors with eigenvalue 1 specifically (1/5 0 0 1) and
(0 2/7 1 0). So, in this case there is no certainty as to what is the long-term fraction of time spend in each state
since it actually depends on where you start the chain.

Looking back at the definition of P, this example suggests that a disconnected (or non-ergodic) Markov Chain has no
unique long-term distribution of time spend in each state. Let us try to prove that an ergodic Markov Chain has a unique
long-term distribution and that the stable vector does not change sign.

In what follows suppose that P is the transition matrix of an ergodic Markov Chain.
Theorem 1: If w is a real solution to w = wP, then w does not take different signs.

Proof : (by Contradiction). Suppose that the elements of w take different signs, i.e., w = (w1 w2 · · · wn).

Define u′ =


sign(w1)
sign(w2)

...
sign(wn)

 where, sign(wi) =

{
1 if wi ≥ 0

-1 if wi < 0

Recall that the product of matrices is associative and hence, (wP)u′ = w(Pu′). Using this fact

wPu′ = (wP)u′

= wu′ By hypothesis w = wP

=
n∑

i=1

|wi|

wPu′ = w(Pu′)

= w


x1
x2
...
xn

 where |xi| ≤ 1

If, for some i is true that |xi| < 1, then |wPu′| = |(wP)u′| > |u(Pu)| = |wPu′|, so it follows |wPu′| > |wPu′| a contradiction.

Therefore, for all i we must have |xi| = 1 and sign(xi) = sign(wi).�

1



Theorem 2: The stable vector of the chain P is unique.

Proof : Let u =


1
1
...
1

. Then Pu = u, because the rows of P add up to 1.

Suppose λ is an eigenvalue of the matrix P with associated eigenvector w. Consider the following:

wP = λw assumption

wPu = λwu multiply both sides by u

w(Pu) = λ(wu) associativity

wu = λ(wu) since Pu = u

=⇒ λ = 1

So the stable vector is the only vector with eigenvalue λ = 1. �

Remark: Together Theorem 1 and Theorem 2 prove that if a Markov Chain is connected, then there is a unique solution
to w = wP and furthermore, the vector w can be written as a probability vector.
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