Markov Chains

M447 - Mathematical Models/Applications 1 October, 2014

Let us start by discussing an example.
Consider the Markov Chain with 4 states whose transition probability matrix is given by:

$$
\mathbf{P}=\begin{array}{c||cccc||}
& & 1 & 2 & 3 \\
0 & 4 \\
1 & 1 / 2 & 0 & 0 & 1 / 2 \\
2 & 0 & 1 / 3 & 7 / 10 & 0 \\
3 & 0 & 2 / 10 & 8 / 10 & 0 \\
4 & 1 / 10 & 0 & 0 & 9 / 10
\end{array}
$$

If we try to find for the long-term fraction of time spend in each state by solving $w P=w$ directly, i.e., finding the left eigenvector with eigenvalue 1 , we will get (using mathematica):

```
Eigenvectors@Transpose[P]
    {{1/5,0, 0, 1}, {0, 2/7, 1, 0}, {-1, 0, 0, 1}, {0, -1, 1, 0}}
Eigenvalues@Transpose[P]
    {1, 1, 2/5, 1/10}
```

First note that eigenvectors that change signs cannot possibly be normalized to provide a probability distribution so ignore these. We can see that there are two possible left eigenvectors with eigenvalue 1 specifically $\left(\begin{array}{llll}1 / 5 & 0 & 0 & 1\end{array}\right)$ and $\left(\begin{array}{lll}0 & 2 / 7 & 1\end{array} 0\right)$. So, in this case there is no certainty as to what is the long-term fraction of time spend in each state since it actually depends on where you start the chain.

Looking back at the definition of \mathbf{P}, this example suggests that a disconnected (or non-ergodic) Markov Chain has no unique long-term distribution of time spend in each state. Let us try to prove that an ergodic Markov Chain has a unique long-term distribution and that the stable vector does not change sign.

In what follows suppose that \mathbf{P} is the transition matrix of an ergodic Markov Chain.
Theorem 1: If w is a real solution to $w=w \mathbf{P}$, then w does not take different signs.
Proof: (by Contradiction). Suppose that the elements of w take different signs, i.e., $w=\left(\begin{array}{llll}w_{1} & w_{2} & \cdots & w_{n}\end{array}\right)$.
Define $u^{\prime}=\left(\begin{array}{c}\operatorname{sign}\left(w_{1}\right) \\ \operatorname{sign}\left(w_{2}\right) \\ \vdots \\ \operatorname{sign}\left(w_{n}\right)\end{array}\right)$ where, $\operatorname{sign}\left(w_{i}\right)=\left\{\begin{array}{cc}1 & \text { if } w_{i} \geq 0 \\ -1 & \text { if } w_{i}<0\end{array}\right.$
Recall that the product of matrices is associative and hence, $(w \mathbf{P}) u^{\prime}=w\left(\mathbf{P} u^{\prime}\right)$. Using this fact

$$
\begin{aligned}
w \mathbf{P} u^{\prime} & =(w \mathbf{P}) u^{\prime} \\
& =w u^{\prime} \quad \text { By hypothesis } w=w \mathbf{P} \\
& =\sum_{i=1}^{n}\left|w_{i}\right| \\
w \mathbf{P} u^{\prime} & =w\left(\mathbf{P} u^{\prime}\right) \\
& =w\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \quad \text { where }\left|x_{i}\right| \leq 1
\end{aligned}
$$

If, for some i is true that $\left|x_{i}\right|<1$, then $\left|w \mathbf{P} u^{\prime}\right|=\left|(w \mathbf{P}) u^{\prime}\right|>|u(\mathbf{P} u)|=\left|w \mathbf{P} u^{\prime}\right|$, so it follows $\left|w \mathbf{P} u^{\prime}\right|>\left|w \mathbf{P} u^{\prime}\right|$ a contradiction. Therefore, for all i we must have $\left|x_{i}\right|=1$ and $\operatorname{sign}\left(x_{i}\right)=\operatorname{sign}\left(w_{i}\right) . \square$

Theorem 2: The stable vector of the chain \mathbf{P} is unique.
Proof : Let $u=\left(\begin{array}{c}1 \\ 1 \\ \vdots \\ 1\end{array}\right)$. Then $\mathbf{P} u=u$, because the rows of \mathbf{P} add up to 1 .
Suppose λ is an eigenvalue of the matrix \mathbf{P} with associated eigenvector w. Consider the following:

$$
\begin{array}{ll}
w \mathbf{P}=\lambda w & \text { assumption } \\
w \mathbf{P} u=\lambda w u & \text { multiply both sides by } u \\
w(\mathbf{P} u)=\lambda(w u) & \text { associativity } \\
w u=\lambda(w u) & \text { since } \mathbf{P} u=u \\
\Longrightarrow \lambda=1 &
\end{array}
$$

So the stable vector is the only vector with eigenvalue $\lambda=1$.

Remark: Together Theorem 1 and Theorem 2 prove that if a Markov Chain is connected, then there is a unique solution to $w=w \mathbf{P}$ and furthermore, the vector w can be written as a probability vector.

