3.1 Stereographic Projection and the Riemann Sphere

Definition 52 Let S^{2} denote the unit sphere $x^{2}+y^{2}+z^{2}=1$ in \mathbb{R}^{3} and let $N=(0,0,1)$ denote the "north pole" of S^{2}. Given a point $M \in S^{2}$, other than N, then the line connecting N and M intersects the xy-plane at a point P. Then stereographic projection is the map

$$
\pi: S^{2}-\{N\} \rightarrow \mathbb{C}: M \mapsto P
$$

Proposition 53 The map π is given by

$$
\pi(a, b, c)=\frac{a+i b}{1-c}
$$

The inverse map is given by

$$
\pi^{-1}(x+i y)=\frac{\left(2 x, 2 y, x^{2}+y^{2}-1\right)}{1+x^{2}+y^{2}}
$$

Proof. Say $M=(a, b, c)$. Then the line connecting M and N can be written parametrically as

$$
\mathbf{r}(t)=(0,0,1)+t(a, b, c-1) .
$$

This intersects the $x y$-plane when $1+t(z-1)=0$, i.e. when $t=(1-z)^{-1}$. Hence

$$
P=\mathbf{r}\left(\frac{1}{1-c}\right)=\left(\frac{a}{1-c}, \frac{b}{1-c}\right)
$$

which is identified with

$$
\frac{a+i b}{1-c} \in \mathbb{C}
$$

On the other hand, if $\pi(a, b, c)=x+i y$ then

$$
\frac{a+i b}{1-c}=x+i y \text { and } a^{2}+b^{2}+c^{2}=1
$$

Hence $(a-i b) /(1-c)=x-i y$ and so

$$
x^{2}+y^{2}=\left(\frac{a+i b}{1-c}\right)\left(\frac{a-i b}{1-c}\right)=\frac{a^{2}+b^{2}}{(1-c)^{2}}=\frac{1-c^{2}}{(1-c)^{2}}=\frac{1+c}{1-c}=-1+\frac{2}{1-c},
$$

giving

$$
\frac{2}{1+x^{2}+y^{2}}=1-c
$$

and

$$
c=\frac{x^{2}+y^{2}-1}{x^{2}+y^{2}+1} .
$$

Then

$$
a+i b=\frac{2(x+i y)}{x^{2}+y^{2}+1}
$$

and we may compare real and imaginary parts for the result.
Definition 54 If we identify, via stereographic projection, points in the complex plane with points in $S^{2}-\{N\}$ and further identify ∞ with N then we have a bijection between the extended complex plane $\tilde{\mathbb{C}}$ and S^{2}. Under this identification S^{2} is known as the Riemann sphere.

Corollary 55 If M corresponds to $z \in \widetilde{\mathbb{C}}$ then the antipodal point $-M$ corresponds to $-1 / \bar{z}$.
Proof. Say $M=(a, b, c)$ which corresponds to $z=(a+i b) /(1-c)$. Then $-M$ corresponds to

$$
w=\frac{-a-i b}{1+c} .
$$

Then

$$
w \bar{z}=\frac{(a-i b)(-a-i b)}{(1-c)(1+c)}=\frac{-a^{2}-b^{2}}{1-c^{2}}=\frac{c^{2}-1}{1-c^{2}}=-1 .
$$

Theorem 56 Circlines in the complex plane correspond to circles on the Riemann sphere and vice-versa.

Proof. Consider the plane Π with equation $A a+B b+C c=D$. This plane will intersect with S^{2} in a circle if $A^{2}+B^{2}+C^{2}>D^{2}$. Recall that the point corresponding to $z=x+i y$ is

$$
(a, b, c)=\frac{\left(2 x, 2 y, x^{2}+y^{2}-1\right)}{1+x^{2}+y^{2}}
$$

which lies in the plane $A a+B b+C c=D$ if and only if

$$
2 A x+2 B y+C\left(x^{2}+y^{2}-1\right)=D\left(1+x^{2}+y^{2}\right)
$$

This can be rewritten as

$$
(C-D)\left(x^{2}+y^{2}\right)+2 A x+2 B y+(-C-D)=0 .
$$

This is the equation of a circle in \mathbb{C} if $C \neq D$. The centre is $(A /(D-C), B /(D-C))$ and the radius is

$$
\frac{\sqrt{A^{2}+B^{2}+C^{2}-D^{2}}}{C-D}
$$

Furthermore all circles can be written in this form - we can see this by setting $C-D=1$ and letting $A, B, C+D$ vary arbitrarily. On the other hand if $C=D$ then we have the equation

$$
A x+B y=C
$$

which is the equation of a line - and moreover any line can be written in this form. Note that $C=D$ if and only if $N=(0,0,1)$ lies in the plane. So under stereographic projection lines in the complex plane correspond to circles on S^{2} which pass through the north pole.
Corollary 57 The great circles on S^{2} correspond to circlines of the form

$$
\alpha(z \bar{z}-1)+\bar{\beta} z+\beta \bar{z}=0 .
$$

Proof. The plane Π makes a great circle on S^{2} if and only if the plane contains the origin i.e. if and only if $D=0$. The corresponding $x+i y$ satisfy the equation

$$
2 A x+2 B y+C\left(x^{2}+y^{2}-1\right)=0
$$

If we set $\alpha=C$ and $\beta=A+i B$ then the result follows.
Proposition 58 Stereographic projection is conformal (i.e. angle-preserving).
Proof. Without loss of generality we can consider the angle defined by the real axis and an arbitray line meeting it at the point $p \in \mathbb{R}$ and making an angle θ. So points on the two lines can be parametrised as

$$
z=p+t, \quad z=p+t e^{i \theta}
$$

where t is real. These points map onto the sphere as

$$
\mathbf{r}(t)=\frac{\left(2(p+t), 0,(p+t)^{2}-1\right)}{1+(p+t)^{2}}, \quad \mathbf{s}(t)=\frac{\left(2(p+t \cos \theta), 2 t \sin \theta,(p+t \cos \theta)^{2}+t^{2} \sin ^{2} \theta-1\right)}{1+(p+t \cos \theta)^{2}+t^{2} \sin ^{2} \theta} .
$$

Then

$$
\mathbf{r}^{\prime}(0)=\frac{\left(2\left(p^{2}-1\right), 0,4 p\right)}{\left(1+p^{2}\right)^{2}}, \quad \mathbf{s}^{\prime}(0)=\frac{\left(2\left(p^{2}-1\right) \cos \theta, 2\left(1+p^{2}\right) \sin \theta, 4 p \cos \theta\right)}{\left(p^{2}+1\right)^{2}} .
$$

So the angle ϕ between these tangent vector is given by

$$
\begin{aligned}
\cos \phi & =\frac{\left(4\left(p^{2}-1\right)^{2} \cos \theta+0+16 p^{2} \cos \theta\right)}{\sqrt{4\left(p^{2}-1\right)^{2}+16 p^{2}} \sqrt{4\left(p^{2}-1\right)^{2} \cos ^{2} \theta+4\left(1+p^{2}\right)^{2} \sin ^{2} \theta+16 p^{2} \cos ^{2} \theta}} \\
& =\frac{4\left(p^{2}+1\right)^{2} \cos \theta}{\left\{2\left(p^{2}+1\right)\right\}\left\{2\left(p^{2}+1\right)\right\}} \\
& =\cos \theta .
\end{aligned}
$$

Hence stereographic projection is conformal as required.

