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All problems below will use the stereographic projection in the form:

σ : Sn 7→ Rn

(p1, . . . , pn+1) 7→ 1

1− pn+1
(p1, . . . , pn)

Note that there are other conventions.

(Ex. 1) Define a map i : C 7→ C by first using the inverse stereographic projection to obtain a point in S2, then applying a
reflection at the plane z = 0, and finally applying the stereographic projection to get a point in R2 = C. Show that this
map is given by z 7→ 1/z̄

Solution: Note that in general σ−1 : Rn 7→ Sn (the inverse stereographic projection) is given by:

σ−1(q) =
2

|q|2 + 1
q+
|q|2 − 1

|q|2 + 1
en+1, where en+1 is the corresponding vector for the standard basis and q = (q1, . . . , qn, 0)

In this case we are considering σ : S2 7→ R2. Hence, for q = (a, b) a point in C = R2, the inverse stereographic projection
σ−1 : R2 7→ S2 can be written as:

σ−1((a, b)) =
2

|(a, b)|2 + 1
(a, b, 0) +

|(a, b)|2 − 1

|(a, b)|2 + 1
(0, 0, 1) =

1

a2 + b2 + 1
(2a, 2b, a2 + b2 − 1)

Let r be the reflection at the plane z = 0. Then r amounts to changing the sign of the third coordinate:

r[σ−1((a, b))] =
1

a2 + b2 + 1
(2a, 2b,−(a2 + b2 − 1)) =

1

a2 + b2 + 1
(2a, 2b, 1− a2 − b2)

Finally, use σ to project back onto C:

σ{r[σ−1((a, b))]} =
1

a2 + b2 + 1

 1

1− 1− a2 − b2

a2 + b2 + 1

(2a, 2b)



=
1

a2 + b2 + 1

 1

2a2 + 2b2

a2 + b2 + 1

(2a, 2b)


=

1

a2 + b2 + 1

[
a2 + b2 + 1

2a2 + 2b2
(2a, 2b)

]

=
2

2(a2 + b2)
(a, b)

=
1

a2 + b2
(a, b)

Which shows that the map i : C 7→ C given by i = σ{r[σ−1((a, b))]} indeed is the map z 7→ 1/z̄ since

z = (a, b) 7→ 1

(a, b)
=

1

a− bi
· a+ bi

a+ bi
=

a+ bi

a2 + b2
=

1

a2 + b2
(a, b)

1



(Ex. 2) Let u ∈ Sn ⊂ Rn+1 be a unit vector, and d a real number. Recall that the set {x : u · x = d} describes a hyperplane
perpendicular to n at distance d from the origin. Show that the intersection of this hyperplane with Sn is mapped by
the stereographic projection to a sphere in Rn−1 with center at 1

d−un+1
(u1, . . . , un) and radius

√
1−d2

|un+1−d| .

Solution: Let Hd(u) = {p ∈ Rn+1 : p · u = d}. For a given unit vector u, the set Hd(u) is the plane perpendicular
to u at distance d from the origin. Let σ be the stereographic projection as defined in the beginning of this document.
Again, note that σ−1 is given by:

σ−1(q) =
2

|q|2 + 1
q+
|q|2 − 1

|q|2 + 1
en+1, where en+1 is the corresponding vector for the standard basis and q = (q1, . . . , qn, 0)

We want to show that for u a unit vector in Rn+1 and d ∈ R the set Hd(u) ∩ Sn is mapped by σ to a circle with the
proposed center and radius. To begin, let p ∈ Hd(u) ∩ Sn so that p is a point representing a "circle" in the sphere Sn.
Consider its image under σ: q = σ(p). By definition, we must have that σ−1(q) · u = d. Then,(

2

|q|2 + 1
q +
|q|2 − 1

|q|2 + 1
en+1

)
· u = d by definition of being in Hd(u) ∩ Sn.

2

|q|2 + 1
q · u+

|q|2 − 1

|q|2 + 1
en+1 · u = d distributing u.

2

|q|2 + 1
q · u′ + |q|

2 − 1

|q|2 + 1
un+1 = d let u = u′ + (un+1 · en+1)u

where u′ = (u1, . . . , un, 0)

2q · u′ + (|q|2 − 1)un+1 = d(|q|2 + 1) Factoring and multiplying both sides by |q|2 + 1

2q · u′ + |q|2un+1 − un+1 − d|q|2 − d = 0 expanding terms

2q · u′ + |q|2(un+1 − d)− (un+1 + d) = 0 grouping |q|2 terms

2q · u′

un+1 − d
+ |q|2 − un+1 + d

un+1 − d
= 0 dividing by un+1 − d, provided that un+1 6= d

∣∣∣∣q +
u′

un+1 − d

∣∣∣∣2 − |u′|2

(un+1 − d)2
− un+1 + d

un+1 − d
= 0 completing squares

∣∣∣∣q − u′

d− un+1

∣∣∣∣2 − |u′|2 + (un+1 + d)(un+1 − d)

(un+1 − d)2
= 0 rearranging terms and adding fractions

∣∣∣∣q − u′

d− un+1

∣∣∣∣2 =
|u′|2 + u2n+1 − d2

(un+1 − d)2∣∣∣∣q − u′

d− un+1

∣∣∣∣2 =
1− d2

(un+1 − d)2
Since |u′|2 + u2n+1 = 1 (unit vector)

Hence, for u a unit vector in Rn+1 and d ∈ R the set Hd(u) ∩ Sn is mapped by σ to a circle of radius:

r2 =
1− d2

(un+1 − d)2
⇐⇒ r =

√
1− d2

|un+1 − d|

And center
u′

d− un+1
=

1

d− un+1
(u1, . . . , un)
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(Ex. 3)

The cube with vertices at 1√
3
(±1,±1,±1) leads to a circle packing of S2 with 8 circles by taking as centers of the circles

the vertices of the cube, and making them so large and equal radius so that they touch. When you stereographically
project them into the plane, you get a figure like the one above, where the fat circle in the center is the unit circle. Find
the radii and centers of the other projected circles. Hint: First describe the circles as intersections of the sphere with
suitable planes, then use the previous exercise.

Solution: Let p1 =
1√
3

(1,−1, 1), p2 =
1√
3

(−1,−1, 1), p3 =
1√
3

(1,−1,−1), p4 =
1√
3

(1, 1, 1). Denote pi,j as the midpoint

between points pi and pj for i 6= j. Then,

p1,2 =
1

2

[
1√
3

(1,−1, 1) +
1√
3

(−1,−1, 1)

]
=

1

2
√

3
(0,−2, 2) =

1√
3

(0,−1, 1)

p1,4 =
1

2

[
1√
3

(1,−1, 1) +
1√
3

(1, 1, 1)

]
=

1

2
√

3
(2, 0, 2) =

1√
3

(1, 0, 1)

p1,3 =
1

2

[
1√
3

(1,−1, 1) +
1√
3

(1,−1,−1)

]
=

1

2
√

3
(2,−2, 0) =

1√
3

(1,−1, 0)

These points are the midpoints between the corresponding vertices of the cube. Note that these are not unit vectors so
they are not on the unit sphere. Therefore, let us normalize these vectors:

p̂1,2 =
p1,2
|p1,2|

=

1√
3

(0,−1, 1)

√
2√
3

=
1√
2

(0,−1, 1)

p̂1,4 =
p1,4
|p1,4|

=

1√
3

(1, 0, 1)

√
2√
3

=
1√
2

(1, 0, 1)

p̂1,3 =
p1,3
|p1,3|

=

1√
3

(1,−1, 0)

√
2√
3

=
1√
2

(1,−1, 0)

These vectors lie on the sphere and through them we can find the plane that describe the circle as intersection with the
sphere. Hence, let us find the plane through p̂1,2, p̂1,4 and p̂1,3:

1. Find the normal vector of the plane: let v and w be two vectors in the plane as follows:

v = p̂1,4 − p̂1,2 =
1√
2

(1, 0, 1)− 1√
2

(0,−1, 1) =
1√
2

(1, 1, 0)
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w = p̂1,4 − p̂1,3 =
1√
2

(1, 0, 1)− 1√
2

(1,−1, 0) =
1√
2

(0, 1, 1)

Clearly, the normal vector is n = (1,−1, 1). The unit normal vector is then u =
1√
3

(1,−1, 1)

2. We can find d by finding the equation of the plane:

u · [p̂1,4 − (x, y, z)] = 0 =⇒ 1√
3

(1,−1, 1) ·
[

1√
2

(1, 0, 1)− (x, y, z)

]
= 0 ⇐⇒ x− y + z =

2√
2

Hence d =
2√
2

=
2
√

2
√

2
2 =
√

2

Therefore, our unit normal is u =
1√
3

(1,−1, 1) and d =
√

2 . Using the previous exercise, we can compute the radius

and center of the projected circle:

Center:
1

d− un+1
(u1, . . . , un) =

1
√

2− 1√
3

(
1√
3
,− 1√

3

)
=

1√
6− 1√

3

(
1√
3
,− 1√

3

)
=

1√
6− 1

(1,−1)

Radius:
√

1− d2
|un+1 − d|

=

√
1−
√

2
2

|1/
√

3−
√

2|

Since all circles are reflections of other circles, the radius is the same and the center is just a reflection, i.e., chaining
sings.

(Ex. 4) Show that two circles with centers at p, q ∈ R2 and radii r, s > 0 intersect at an angle φ with

cosφ =
r2 + s2 − |p− q|2

2rs

This angle of intersection is defined as the angle between the vectors x − p and x − q for a point x that lies on both
circles. Hint: expand |(x− p)− (x− q)|2.

Solution: First, using the definition of dot product, if we have vectors a and b, then a · b = |a||b|cosθ, where θ is the
angle between the vectors a and b. We will use this formula to find the angle of intersection of two circles.

To begin, let us use the hint and expand |(x− p)− (x− q)|2:

|(x−p)−(x−q)|2 = |(x−p)|2−2(x−p)·(x−q)+|(x−q)|2 =⇒ (x−p)·(x−q) =
|(x− p)|2 + |(x− q)|2 − |(x− p)− (x− q)|2

2

We can simplify this formula quite a bit. Note that by constructing the vector x − p must have length r, since this is
a vector from the center of the first circle to the intersection of the circles. Hence, |x − p| = r. Likewise, |x − q| = s.
Also, |(x − p) − (x − q)| = |q − p| = |p − q|, since the vector q − p has the same length as the vector p − q (indeed,
p− q = −1(q − p)). Replacing in our identity above:

(x− p) · (x− q) =
|(x− p)|2 + |(x− q)|2 − |(x− p)− (x− q)|2

2
=
r2 + s2 − |p− q|2

2

Finally, replace this in the dot product formula for the vectors x− p and x− q:

(x− p) · (x− q) = |x− p||x− q|cosφ =⇒ cosφ =
(x− p) · (x− q)
|x− p||x− q|

=

r2 + s2 − |p− q|2

2
rs

=
r2 + s2 − |p− q|2

2rs

Establishing the result.

(Ex. 5) Show that the dihedral angle of the regular Euclidean octahedron is approximately 109.47◦.

Solution: Consider an octahedron centered at (0, 0, 0) with vertices at (±1, 0, 0), (0,±1, 0) and (0, 0,±1). To com-
pute the dihedral angle is the same as computing the angle between normal vectors to two adjacent faces. Hence, let us
first find normal to two adjacent faces of this octahedron:
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(a) Face on the first octant: two edges are given by the vectors v1 and v2, where:

v1 = (0, 1, 0)− (1, 0, 0) = (−1, 1, 0)

v2 = (0, 0, 1)− (1, 0, 0) = (−1, 0, 1)

From this we get the first normal n1 = (1, 1, 1)

(b) Face on the fourth octant: again, two edges are given by the vector t1 and t2, where

t1 = (0,−1, 0)− (1, 0, 0) = (−1,−1, 0)

t2 = (0, 0, 1)− (1, 0, 0) = (−1, 0, 1)

From this we get the second normal n2 = (−1, 1,−1)

Since these are adjacent faces, we can compute the dihedral angle by the dot product between n1 and n2:

cosθ =
n1 · n2
|n1||n2|

=⇒ cosθ =
(1, 1, 1) · (−1, 1,−1)√

3
√

3
=
−1 + 1− 1

3
= −1

3
=⇒ cosθ = −1

3
=⇒ θ = arccos(−1

3
) =⇒ θ ≈ 109.47◦

Since the angles of the regular Euclidean octahedron are scale invariant, the above argument works for an octahedron
of any size.
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