M436 - Introduction to Geometries - Homework 8
 Enrique Areyan
 October 29, 2014

(Ex. 1) Find all quaternions $q=a+b i+c j+d k$ such that $q^{2}=-13+6 i-2 j+4 k$.
Solution: To find all such quaternion we solve the equation:

$$
\left.\begin{array}{c}
q^{2}=(a+b i+c j+d k)(a+b i+c j+d k)=-13+6 i-2 j+4 k \Longrightarrow \\
a^{2}+a b i+a c j+a d k+a b i+b^{2} i^{2}+b c i j+b d i k+a c j+b c j i+c^{2} j^{2}+c d j k+a d k+b d k i+c d k j+d^{2} k^{2}=-13+6 i-2 j+4 k \Longrightarrow \\
a^{2}+2 a b i+a c j+a d k-b^{2}+b c k-b d j+a c j-b c k-c^{2}+c d i+a d k+b d j-c d i-d^{2}=-13+6 i-2 j+4 k \Longrightarrow \\
a^{2}-b^{2}-c^{2}-d^{2}+2 a b i+2 a c j+2 a d k=-13+6 i-2 j+4 k \Longrightarrow \\
\left\{\begin{array}{lll}
2
\end{array}\right. \\
\begin{cases}a^{2}-b^{2}-c^{2}-d^{2}=-13 \Longrightarrow b^{2}-c^{2}-d^{2}=-13 \Longrightarrow & a^{2}-b^{2}-c^{2}-d^{2}=-13 \\
2 a b=6 & a b=3 \\
2 a c=-2 & a c=-1 \\
2 a d=4 & a d=2\end{cases} \\
\hline
\end{array}\right\}
$$

Replacing the last three equations into the first one we obtain: $a^{2}-\frac{9}{a^{2}}-\frac{1}{a^{2}}-\frac{4}{a^{2}}=-13 \Longleftrightarrow a^{2}-\frac{14}{a^{2}}=-13$, and hence (note that $a \neq 0, b \neq 0, c \neq 0, d \neq 0$)

$$
a^{4}+13 a^{2}-14=0
$$

Note that both $a=1$ and $a=-1$ are roots of the polynomial $a^{4}+13 a^{2}-14$, since by inspection $1^{4}+13(1)^{2}-14=0$. So we divide the polynomial by $(a-1)$ to deduce that $a^{4}+13 a^{2}-14=\left(a^{3}+a^{2}+14 a+14\right)(a-1)$. We can further divide the polynomial $a^{3}+a^{2}+14 a+14$ by $a+1$ to get that $a^{3}+a^{2}+14 a+14=\left(a^{2}+14\right)(a+1)$. Combining these results we get:

$$
a^{4}+13 a^{2}-14=\left(a^{2}+14\right)(a+1)(a-1)=(a+\sqrt{14} i)(a-\sqrt{14} i)(a+1)(a-1)
$$

And so the possible values for a are $a= \pm 1, a= \pm \sqrt{14} i$. Each of these 4 values gives a value for b, c and d. The following table summarizes this information:

a	b	c	d
1	3	-1	2
-1	-3	1	-2
$-\sqrt{14} i$	$\frac{3 i}{\sqrt{14}}$	$-\frac{i}{\sqrt{14}}$	$\sqrt{\frac{2}{7}} i$
$\sqrt{14} i$	$-\frac{3 i}{\sqrt{14}}$	$\frac{i}{\sqrt{14}}$	$-\sqrt{\frac{2}{7}} i$

(Ex. 2) Given a spherical triangle \triangle with angles $0<\alpha, \beta, \gamma<\pi$. For which choice of angles is there a tiling of the sphere S^{2} by triangles with the same angles as \triangle such that neighboring triangles are symmetric with respect to their shared edge?

Solution: Let α, β, γ be the angles of a spherical triangle. Let us consider a tiling of the sphere by this triangle. If the triangle closes when tiling the sphere then $\alpha=\frac{2 \pi}{n}$, where $n \geq 3$ and $n \in \mathbb{Z}$. Moreover, since we want the triangle to be such that neighboring triangles are symmetric with respect to their shared edge, the same reasoning applies to β and γ, and so let us write these conditions as:

$$
\alpha=\frac{2 \pi}{A}, \beta=\frac{2 \pi}{B}, \gamma=\frac{2 \pi}{C}, \quad \text { where } A, B, C \in \mathbb{Z} \text { and } A, B, C \geq 3
$$

An spherical triangle is such that $\alpha+\beta+\gamma>\pi$. This means that:

$$
\alpha+\beta+\gamma>\pi \Longrightarrow \frac{2 \pi}{A}+\frac{2 \pi}{B}+\frac{2 \pi}{C}>\pi \Longleftrightarrow 2 \pi\left(\frac{1}{A}+\frac{1}{B}+\frac{1}{C}\right)>\pi \Longleftrightarrow \frac{1}{A}+\frac{1}{B}+\frac{1}{C}>\frac{1}{2}
$$

To classify all spherical triangles, it suffices to find solutions to the last equation, i.e., find suitable integers A, B, C. We do this by cases:

Suppose A is odd. Then the triangle is isosceles which means that $B=C$.

Suppose \underline{A} and B are odd. Then, by previous case it follows that $B=C$ and $A=C$ so that $A=B=C$. So,

$$
\frac{1}{A}+\frac{1}{B}+\frac{1}{C}>\frac{1}{2} \Longrightarrow \frac{3}{A}>\frac{1}{2} \Longleftrightarrow A<6
$$

Since A is odd, we have solutions: $A=B=C=3$ or $A=B=C=5$. The first case implies that $\alpha=\beta=\gamma=120^{\circ}$ and the second case implies that $\alpha=\beta=\gamma=72^{\circ}$
Suppose A is odd and $B=C$ is even. Replacing A, B, C by $A, 2 b, 2 b$. You find that:

$$
\frac{1}{A}+\frac{1}{B}+\frac{1}{C}=\frac{1}{A}+\frac{1}{2 b}+\frac{1}{2 b}=\frac{1}{A}+\frac{2}{2 b}=\frac{1}{A}+\frac{1}{b}>\frac{1}{2} \Longrightarrow \frac{1}{b}>\frac{1}{2}-\frac{1}{A}
$$

If $A=3$, then $b<6$. Since $B=2 b \geq 3 \Longrightarrow b \geq 3 / 2 \Longrightarrow B \geq 2$. Hence, $b=2,3,4$ or 5 so that $B=C=4,6,8,10$. This yields triangles $(3,4,4),(3,6,6),(3,8,8),(3,10,10)$ for corresponding angles $(\alpha, \beta, \gamma)=$ $\left(120^{\circ}, 90^{\circ}, 90^{\circ}\right),\left(120^{\circ}, 60^{\circ}, 60^{\circ}\right),\left(120^{\circ}, 45^{\circ}, 45^{\circ}\right),\left(120^{\circ}, 36^{\circ}, 36^{\circ}\right)$
Suppose $\underline{A, B, C}$ are all even. Then, $A=2 a, B=2 b, C=2 c$. This implies that

$$
\frac{1}{A}+\frac{1}{B}+\frac{1}{C}>\frac{1}{2} \Longrightarrow \frac{1}{2 a}+\frac{1}{2 b}+\frac{1}{2 c}>\frac{1}{2} \Longleftrightarrow \frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>\frac{1}{2} \Longleftrightarrow \frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1
$$

Note that if $a=b=c=3$, then $\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$, so this case does not yield a spherical triangle.
Hence, it must be that one of a, b and c is less than 3 . Without loss of generality, assume that $a=2$ and that $a \leq b \leq c$ Here we have various sub cases:
$b=2$. In this case: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\Longrightarrow \frac{1}{2}+\frac{1}{2}+\frac{1}{c}>1 \Longrightarrow \frac{1}{c}>0$, so c can be any number bigger than 3 . In short, this case yields triangles of the form $(2,2, c)$ with $c>3$, i.e. triangles with angles: $\alpha=\beta=90^{\circ}$ and $\gamma>60^{\circ}$.
$b>4$ is impossible and thus, $b=3$. From this we deduce: $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}+\frac{1}{3}+\frac{1}{c}>1 \Longrightarrow c<6$, so the only options are $c=3,4$ or 5 . This case yields triangles $(2,3,3),(2,3,4),(2,3,5)$ corresponding to angles $(\alpha, \beta, \gamma)=\left(90^{\circ}, 60^{\circ}, 60^{\circ}\right),\left(90^{\circ}, 60^{\circ}, 45^{\circ}\right),\left(90^{\circ}, 60^{\circ}, 36^{\circ}\right)$
(Ex. 3) In the previous exercise, you should have found an example with $\alpha=\beta=\gamma=72^{\circ}$. Consider one of the triangles, and denote the reflections in S^{2} at the edges of this triangle by ρ, ϕ, ψ. Let G be the subgroup of $O(3)$ generated by these reflections. Draw the Cayley graph of G with respect to the set $\Gamma=\{\rho, \phi, \psi\}$.

Solution: By definition, the Cayley Graph of G w.r.t Γ has G as vertices and a is connected to b if and only if there is $g \in \Gamma$ s.t. $b=a \cdot g$. As mentioned in class, we will consider the case of the tetrahedron. In this case, the subgroup of $O(3)$ generated by these reflection correspond to all triangles tilting the sphere. There are 24 such triangles. Then the Cayley graph is given by:
(Ex. 4) Determine all linear automorphisms of \mathbb{F}_{2}^{n} (i.e. invertible $n \times n$-matrices with entries in \mathbb{F}_{2}) that are isometries with respect to the Hamming distance.

Solution: First, note that for $n=1$, an invertible matrix corresponds just to the number 1, which clearly preserves the Hamming distance.
For $n \geq 2$, all linear automorphisms of \mathbb{F}_{2}^{n} that are isometries with respect to the Hamming distance $\left(d_{H}\right)$ correspond exactly to permutation matrices. Let us show both directions of this argument, i.e., $(i)(\Longrightarrow)$ A permutation matrix in \mathbb{F}_{2}^{n} preserves Hamming distance and $(i i)(\Longleftarrow)$ A Hamming preserving distance in \mathbb{F}_{2}^{n} is a permutation matrix.
(i Let A be a permutation matrix over \mathbb{F}_{2}. Clearly, A is an invertible $n \times n$ matrix since its determinant is just the determinant of the identity with a possible change of sign. Now, take two points p, q in \mathbb{F}_{2}^{n}. Suppose that $d_{H}(p, q)=m$. This means that there are m different entries between p and q.
We know that $A p=p^{\prime}$, where p^{\prime} is just a permutation of the entries of p. Likewise $A q=q^{\prime}$ where q^{\prime} is a permutation of q. The key observation is that both p^{\prime} and q^{\prime} are permuted in the same entries by A. Therefore, p^{\prime} and q^{\prime} differ in the same number of entries as p and q. In symbols, $d_{H}\left(p^{\prime}, q^{\prime}\right)=d_{H}(A p, A q)=m=d_{H}(p, q)$. Hence, a permutation matrix preserves the Hamming distance.
(ii) Here is easier to argue for the contrapositive, i.e., if an invertible $n \times n$ matrix with entries in \mathbb{F}_{2} is not a permutation matrix, then it does not preserve the Hamming distance.
Let A be an invertible $n \times n$ matrix with entries in \mathbb{F}_{2} that is not a permutation matrix. Then, there is at least one column of A, say column i, that has at least 2 ones. Let $\left\{e_{i}\right\}$ be the canonical basis for \mathbb{F}_{2}. Then $d_{H}\left(e_{i}, e_{j}\right)=2$ for any $i \neq j$. Note that $A e_{i}$ is just selecting the i th column of A. Moreover, there must be another column of A, say column j that differs in at least 3 positions with column i or otherwise the matrix would not be invertible because said column could be written as the linear combination of two or more columns of A. Hence, $d_{H}\left(A e_{i}, A e_{j}\right) \geq 3 \neq d_{H}\left(e_{i}, e_{j}\right)=2$, and so this matrix A does not preserve the Hamming distance.
(Ex. 5) Let q be an imaginary unit quaternion, i.e. $|q|=1$ and $\bar{q}=-q$. Show that the unit quaternions p such that $p q \bar{p}=q$ have the form $p=r+s q$ with $r, s \in \mathbb{R}$ and $r^{2}+s^{2}=1$.

Solution: Let the unit quaternion p have the form $p=r+s q$ with $r, s \in \mathbb{R}$ and $r^{2}+s^{2}=1$; and q a unit quaternion. Then:

$$
\begin{aligned}
p q \bar{p} & =(r+s q) q \overline{(r+s q)} \\
& =(r+s q) q(\bar{r}+\overline{s q}) \\
& =(r+s q) q(r+s \bar{q}) \\
& =(r+s q) q(r+s(-q)) \\
& =(r+s q) q(r-s q) \\
& =\left(r q+s q^{2}\right)(r-s q) \\
& =(r q-s)(r-s q) \\
& =\left(r^{2} q-r s q^{2}-s r+s^{2} q\right) \\
& =\left(r^{2}+s^{2}\right) q+r s-s r \\
& =q
\end{aligned}
$$

by hypothesis on p
by properties of the conjugate
by properties of the conjugate or real numbers by hypothesis on q
rearranging terms
distributive property since q is a quaternion it follows $q^{2}=-1$ oting that reals commute with quaternions since q is a quaternion it follows $q^{2}=-1$
since $r s=s r$ and by hypothesis $r^{2}+s^{2}=1$
Hence, if $p=r+s q$ then $p q \bar{p}=q$

