M436 - Introduction to Geometries - Homework 6
 Enrique Areyan
 October 15, 2014

(Ex. 1) Consider in $\mathbb{R} P^{2}$ the triangle with vertices $p_{1}=(-3,-4), p_{2}=(3,-4)$, and $p_{3}=(-3,4)$. Determine the centers and radii of the circumcircle and incircle of this triangle. The point $q_{1}=(-4,-3)$ lies also on the circumcircle. Find the coordinates of the other two vertices q_{2} and q_{3} of the Poncelet triangle determined by q_{1} and the two circles

Solution: Let a be the length of the side of the triangle corresponding to the line segment from $(-3,4)$ to $(3,-4)$. Then

$$
a=d((-3,4),(3,-4))=\sqrt{(-3-3)^{2}+(4+4)^{2}}=\sqrt{36+64}=\sqrt{100}=10
$$

Likewise, let b be the length of the side of the triangle corresponding to the line segment from $(-3,-4)$ to $(3,-4)$. Then

$$
b=d((-3,-4),(3,-4))=\sqrt{(-3-3)^{2}+(-4+4)^{2}}=\sqrt{6^{2}}=6
$$

Lastly, let c be the length of the side of the triangle corresponding to the line segment from $(-3,-4)$ to $(-3,4)$. Then

$$
c=d((-3,-4),(-3,4))=\sqrt{(-3+3)^{2}+(-4-4)^{2}}=\sqrt{8^{2}}=8
$$

The center $\left(x_{I}, y_{I}\right)$ of the incircle is given by the formula:

$$
\left(x_{I}, y_{I}\right)=\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)
$$

where $\left(x_{1}, y_{1}\right)=(-3,-4),\left(x_{2}, y_{2}\right)=(-3,4)$ and $\left(x_{3}, y_{3}\right)=(3,-4)$, i.e., the vertices of the triangle. Hence:

$$
\left(x_{I}, y_{I}\right)=\left(\frac{10(-3)+6(-3)+8(3)}{10+8+6}, \frac{10(-4)+6(4)+8(-4)}{10+8+6}\right)=\left(\frac{-30-18+24}{24}, \frac{-40+24-32}{24}\right)=\left(\frac{-24}{24}, \frac{-48}{24}\right)
$$

So the center of the incircle is $(-1,-2)$. The radius of the incircle r_{I} is given by:

$$
r_{I}=\frac{2 \cdot \text { area of triangle }}{\text { sum of sides }}
$$

In our case, the area of the triangle is $(b \cdot h) / 2=(6 \cdot 8) / 2=24$, and the sum of the sides is $8+6+10=24$. Hence:

$$
r_{I}=\frac{2 \cdot 24}{24}=2
$$

The radius of the circumcircle is given by the formula $R_{C}=\frac{a \cdot b \cdot c}{4 \cdot \text { area }}$, so we can solve:

$$
R_{C}=\frac{10 \cdot 6 \cdot 8}{4 \cdot 24}=5
$$

Since the radius is 5 , we must have that the center $\left(x_{C}, y_{C}\right)=(0,0)$, so that the circumcircle meets with every vertex. We were given the other two points of the Poncelet triangle: $q_{2}=(1,2 \sqrt{6})$ and $q_{3}=(1,-2 \sqrt{6})$. Clearly the line through $q_{1} q_{2}$ given by $y=\frac{1}{5}(2 \sqrt{6}+3) x+\frac{1}{5}(8 \sqrt{6}-3)$ intersects the circle in only one point since this is a linear variable. Likewise, the line through $q_{1} q_{3}$ and $q_{2} q_{3}$ will also intersect the circle in only one point, showing that q_{1}, q_{2} and q_{3} form a Poncelet triangle.
(Ex. 2) Find a projective linear transformation of $\mathbb{R} P^{2}$ that maps the conic $x^{2}+y^{2}=z^{2}$ to the conic $x z=y^{2}$. Verify your claim

Solution: First note that $x^{2}+y^{2}=z^{2} \Longleftrightarrow y^{2}=z^{2}-x^{2} \Longleftrightarrow y^{2}=(z-x)(z+x)$. Now consider the linear change:

$$
z-x \mapsto x, \quad y \mapsto y, \quad z+x \mapsto z
$$

Applying this change we get that $y^{2}=(z-x)(z+x) \Longrightarrow y^{2}=x z$, verifying that the above projective linear transformation maps the conic $x^{2}+y^{2}=z^{2}$ to the conic $x z=y^{2}$
(Ex. 3) Find a conic in the projective plane $\mathbb{F}_{5} P^{2}$ that contains the points $(1: 1: 2),(1: 1: 3),(1: 3: 0),(1: 4: 2)$ and ($1: 4: 3$). Find one more point on this conic.

Solution: By Theorem 1 in page 80, since no three of the given points are collinear, we can find the unique conic containing these five points. First, let us label the points as follows: $p_{1}=(1: 1: 2), p_{2}=(1: 1: 3), p_{3}=(1: 3: 0), p_{4}=(1: 4: 2)$ and $p_{5}=(1: 4: 3)$. Now, we can find two degenerate conics containing the lines $p_{1} p_{2}, p_{3} p_{4}$ and $p_{1} p_{3}, p_{2} p_{4}$ respectively. Call these A and B. Then,

$$
\begin{aligned}
& A=\left(p_{1} \times p_{2}\right) \cdot\left(p_{3} \times p_{4}\right)^{T}=\left[\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \times\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)\right] \cdot\left[\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right) \times\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right)\right]^{T}=\left(\begin{array}{l}
1 \\
4 \\
0
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
3 \\
1
\end{array}\right)^{T}=\left(\begin{array}{lll}
1 & 3 & 1 \\
4 & 2 & 4 \\
0 & 0 & 0
\end{array}\right) \\
& B=\left(p_{1} \times p_{3}\right) \cdot\left(p_{2} \times p_{4}\right)^{T}=\left[\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) \times\left(\begin{array}{l}
1 \\
3 \\
0
\end{array}\right)\right] \cdot\left[\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right) \times\left(\begin{array}{l}
1 \\
4 \\
2
\end{array}\right)\right]^{T}=\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{l}
0 \\
1 \\
3
\end{array}\right)^{T}=\left(\begin{array}{lll}
0 & 4 & 2 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right)
\end{aligned}
$$

Finally, solve for t in the equation $p_{5}^{T}(A+t B) p_{5}=0$

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\left\{\left[\begin{array}{lll}
1 & 3 & 1 \\
4 & 2 & 4 \\
0 & 0 & 0
\end{array}\right]+t\left[\begin{array}{lll}
0 & 4 & 2 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]\right\}\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right)=0 \\
\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\left[\begin{array}{lll}
1 & 3+4 t & 1+2 t \\
4 & 2+2 t & 4+t \\
0 & 2 t & t
\end{array}\right]\left(\begin{array}{l}
1 \\
4 \\
3
\end{array}\right)=0 \\
\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\left[\begin{array}{c}
1+2+t+3+t \\
4+3+3 t+2+3 t \\
3 t+3 t
\end{array}\right]=0 \\
\left(\begin{array}{lll}
1 & 4 & 3
\end{array}\right)\left[\begin{array}{c}
2 t+1 \\
t+4 \\
t
\end{array}\right]=0
\end{gathered}
$$

Therefore, the conic containing all five points is given by :

$$
A+2 B=\left[\begin{array}{lll}
1 & 3 & 1 \\
4 & 2 & 4 \\
0 & 0 & 0
\end{array}\right]+2\left[\begin{array}{lll}
0 & 4 & 2 \\
0 & 2 & 1 \\
0 & 2 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
4 & 1 & 1 \\
0 & 4 & 2
\end{array}\right]
$$

Indeed it is true that $p_{i}^{T}(A+2 B) p_{i}=0$ for $1 \leq i \leq 5$.
Note that the point $(x: y: z)$ lies on the conic if and only if:

$$
\begin{gathered}
\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
4 & 1 & 1 \\
0 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=0 \Longleftrightarrow\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{c}
x+y \\
4 x+y+z \\
4 y+2 z
\end{array}\right)=0 \Longleftrightarrow x^{2}+x y+4 x y+y^{2}+y z+4 y z+2 z^{2}=0 \Longleftrightarrow \\
x^{2}+y^{2}+2 z^{2}=0
\end{gathered}
$$

Note that this conic is symmetric in x and y, i.e., if $(x: y: z)$ is on the conic then $x^{2}+y^{2}+2 z^{2}=0 \Longleftrightarrow y^{2}+x^{2}+2 z^{2}=$ $0 \Longleftrightarrow(y: x: z)$ is on the conic. Since we know that the point $(1: 4: 2)$ is on the conic, we conclude that the point ($4: 1: 2$) is on the conic. Indeed:

$$
4^{2}+1^{2}+2\left(2^{2}\right)=16+1+8=25 \equiv 0 \quad(\bmod \quad 5)
$$

(Ex. 4) For which value of t is the conic $2 x^{2}-2 y^{2}-t z^{2}+3 x y-x z+3 y z=0$ in $\mathbb{R} P^{2}$ degenerate, and in which two lines does it decompose in this case?

Solution: First, let us find the symmetric matrix that defines this conic. I claim it is this matrix:

$$
C=\left(\begin{array}{ccc}
2 & 3 / 2 & -1 / 2 \\
3 / 2 & -2 & 3 / 2 \\
-1 / 2 & 3 / 2 & -t
\end{array}\right)
$$

We can check that the conic is the set $\left\{x \in \mathbb{R} P^{2}: x^{T} C x=0\right\}$ by computing:

$$
\begin{gathered}
0=x^{T} C x=\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{ccc}
2 & 3 / 2 & -1 / 2 \\
3 / 2 & -2 & 3 / 2 \\
-1 / 2 & 3 / 2 & -t
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{lll}
x & y & z
\end{array}\right)\left(\begin{array}{c}
2 x+\frac{3}{2} y-\frac{1}{2} z \\
\frac{3}{2} x-2 y+\frac{3}{2} z \\
-\frac{1}{2} x+\frac{3}{2} y-t z
\end{array}\right)= \\
2 x^{2}+\frac{3}{2} x y-\frac{1}{2} x z+\frac{3}{2} x y-2 y^{2}+\frac{3}{2} y z-\frac{1}{2} x z+\frac{3}{2} y z-t z^{2}=2 x^{2}-2 y^{2}-t z^{2}+\left[\frac{3}{2}+\frac{3}{2}\right] x y-\left[\frac{1}{2}+\frac{1}{2}\right] x z+\left[\frac{3}{2}+\frac{3}{2} y z\right]= \\
2 x^{2}-2 y^{2}-t z^{2}+3 x y-x z+3 y z=0
\end{gathered}
$$

To find the value of t for which the conic is degenerate, we need to find t for which the determinant of C is zero:

$$
\begin{aligned}
\operatorname{det}(C)=\operatorname{det}\left|\left(\begin{array}{ccc}
2 & 3 / 2 & -1 / 2 \\
3 / 2 & -2 & 3 / 2 \\
-1 / 2 & 3 / 2 & -t
\end{array}\right)\right| & =2\left(\begin{array}{cc}
-2 & 3 / 2 \\
3 / 2 & -t
\end{array}\right)-\frac{3}{2}\left(\begin{array}{cc}
3 / 2 & 3 / 2 \\
-1 / 2 & -t
\end{array}\right)-\frac{1}{2}\left(\begin{array}{cc}
3 / 2 & -2 \\
-1 / 2 & 3 / 2
\end{array}\right) \\
& =2\left(2 t-\frac{9}{4}\right)-\frac{3}{2}\left(-\frac{3}{2} t+\frac{3}{4}\right)-\frac{1}{2}\left(\frac{9}{4}-1\right) \\
& =4 t-\frac{9}{2}+\frac{9}{4} t-\frac{9}{8}-\frac{9}{8}+\frac{1}{2} \\
& =4 t+\frac{9}{4} t+\left[\frac{1}{2}-\frac{9}{2}-\frac{9}{8}-\frac{9}{8}\right] \\
& =\frac{25}{4} t-\frac{25}{4}
\end{aligned}
$$

Hence, for the value of $t: \frac{25}{4} t-\frac{25}{4}=0 \Longrightarrow t=1$, we have that the conic is degenerate. In this case the conic is:

$$
2 x^{2}-2 y^{2}-z^{2}+3 x y-x z+3 y z=0 \Longleftrightarrow(x+2 y-z)(2 x-y+z)=0
$$

That is, the conic decompose in two lines given in homogeneous coordinates by $(1: 2:-1)$ and $(2:-1: 1)$.
(Ex. 5) In $\mathbb{R} P^{2}$, find the two tangents to the conic $3 x^{2}-y^{2}+z^{2}+2 x z=0$ that pass through the point (1:1:-2). Find also the points where these lines touch the conic.

Solution: The conic $3 x^{2}-y^{2}+z^{2}+2 x z=0$ is given by the symmetric matrix $C=\left(\begin{array}{ccc}3 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right)$ because:
$0=x^{T} C x=\left(\begin{array}{lll}x & y & z\end{array}\right)\left(\begin{array}{ccc}3 & 0 & 1 \\ 0 & -1 & 0 \\ 1 & 0 & 1\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{lll}x & y & z\end{array}\right)\left(\begin{array}{c}3 x+z \\ -y \\ x+z\end{array}\right)=3 x^{2}+x z-y^{2}+x z+z^{2}=3 x^{2}-y^{2}+z^{2}+2 x z$
Let $p=(1: 1:-2)$ and $q=(x: y: z)$ be a point in the conic. Then, the following two conditions hold:
(i) $\quad q^{T} A q=0 \quad$ since q is a point on the conic A
(ii) $\quad p^{T}(A q)=0 \quad$ since the point p must be incident with line $A q$, where $A q$ is the tangent line we want to find

From condition (ii) we get that:

$$
p^{T}(A q)=0 \Longleftrightarrow 0=p^{T}\left[\left(\begin{array}{ccc}
3 & 0 & 1 \\
0 & -1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)\right] \Longleftrightarrow 0=\left(\begin{array}{ccc}
1 & 1 & -2
\end{array}\right)\left(\begin{array}{c}
3 x+z \\
-y \\
x+z
\end{array}\right) \Longleftrightarrow 0=3 x+z-y-2 x-2 z=x-y-z
$$

Therefore, we have that $z=x-y$. Replacing this into condition (i), which is equivalent to replacing into the equation for the conic:

$$
\begin{aligned}
3 x^{2}-y^{2}+z^{2}+2 x z=0 & \Longrightarrow 3 x^{2}-y^{2}+(x-y)^{2}+2 x(x-y)=0 \Longrightarrow 3 x^{2}-y^{2}+x^{2}-2 x y+y^{2}+2 x^{2}-2 x y=0 \\
& \Longrightarrow 6 x^{2}-4 x y=0 \Longleftrightarrow 3 x^{2}-2 x y=0 \Longleftrightarrow x(3 x-2 y)=0
\end{aligned}
$$

From which we obtain the two solutions:
$x=0:$, then we can solve for z in terms of y, i.e., $z=x-y=-y$. The form of a general point is then $(0: y:-y)$, from which we can pick a representative, say $(0: 1:-1)$
$3 x-2 y=0$:, then $x=\frac{2}{3} y$. We can solve for z, i.e., $z=x-y=\frac{2}{3} y-y=-\frac{1}{3} y$. The form of a general point is given by $\left(\frac{2}{3} y: y:-\frac{1}{3} y\right)=(2 y: 3 y:-y)$, from which we can pick a representative, say $(2: 3:-1)$

So the points where the tangent lines that pass through the point $(1: 1:-2)$ touch the conic are:

$$
q_{1}=(0: 1:-1) \text { and } q_{2}=(2: 3:-1)
$$

Finally, we can find the tangent lines $q_{1} p$ and $q_{2} p$ by taking the cross product:
$q_{1} p=q_{1} \times p=\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right) \times\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
$q_{2} p=q_{2} \times p=\left(\begin{array}{c}2 \\ 3 \\ -1\end{array}\right) \times\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right)=\left(\begin{array}{c}-5 \\ 3 \\ -1\end{array}\right)$

