M436 - Introduction to Geometries - Homework 4

Enrique Areyan

September 26, 2014

(Ex. 1) Let $D_{1} v=2\left(v-\binom{1}{1}\right)+\binom{1}{1}$ be a dilation in \mathbb{R}^{2}. Find another dilation $D_{2} v=\lambda(v-p)+p$ such that $\left(D_{2} \circ D_{1}\right) v=v+\binom{1}{0}$.
Solution: First note that we can write D_{1} differently as $D_{1}(v)=2\left(v-\binom{1}{1}\right)+\binom{1}{1}=2 v-\binom{2}{2}+\binom{1}{1}=2 v-\binom{1}{1}$. Now,

$$
\left(D_{2} \circ D_{1}\right)(v)=D_{2}\left(D_{1}(v)\right)=D_{2}\left[2 v-\binom{1}{1}\right]=v+\binom{1}{0}
$$

By inspection we can deduce that $\lambda=1 / 2$, since the coefficient of v is 2 and we want it to be 1 . This observation reduces our computation to:

$$
D_{2}\left[2 v-\binom{1}{1}\right]=\frac{1}{2}\left[2 v-\binom{1}{1}\right]+\frac{1}{2} p=v-\frac{1}{2}\binom{1}{1}+\frac{1}{2} p=
$$

Letting $p=\binom{p_{1}}{p_{2}}$

$$
=v-\frac{1}{2}\binom{1}{1}+\frac{1}{2} p=v-\frac{1}{2}\binom{1}{1}+\frac{1}{2}\binom{p_{1}}{p_{2}}=v+\frac{1}{2}\left[\binom{p_{1}}{p_{2}}-\binom{1}{1}\right]
$$

Therefore,

$$
\frac{1}{2}\left[\binom{p_{1}}{p_{2}}-\binom{1}{1}\right]=\binom{1}{0} \Longrightarrow \frac{1}{2} p_{1}-\frac{1}{2}=1 \text { and } \frac{1}{2} p_{2}-\frac{1}{2}=0 \Longrightarrow p_{1}=3 \text { and } p_{2}=1
$$

Our dilation D_{2} is given by $D_{2}(v)=\frac{1}{2}\left(v-\binom{3}{1}\right)+\binom{3}{1}$. We can check that indeed this is the case:

$$
\begin{aligned}
\left(D_{2} \circ D_{1}\right)(v)=D_{2}\left(D_{1}(v)\right)=D_{2}\left[2\left(v-\binom{1}{1}\right)+\binom{1}{1}\right] & =\frac{1}{2}\left[2\left(v-\binom{1}{1}\right)+\binom{1}{1}-\binom{3}{1}\right]+\binom{3}{1} \\
& =v+\frac{1}{2}\left[-\binom{2}{2}+\binom{1}{1}-\binom{3}{1}\right]+\binom{3}{1} \\
& =v+\frac{1}{2}\left[\binom{-4}{-2}\right]+\binom{3}{1} \\
& =v-\binom{2}{1}+\binom{3}{1} \\
& =v+\binom{1}{0}
\end{aligned}
$$

(Ex. 2) The following puzzle is played on the set of points \mathbb{Z}^{2} with integer coordinates in \mathbb{R}^{2}. The points $p_{1}=(0,0), p_{2}=(1,-1)$, and $p_{3}=(-2,1)$ are 'mirrors', and the player has a peg placed on some point. A move consists of jumping with the peg across any of the three mirrors. For instance, if the peg is at the point $(1,0)$, we can jump to $(-1,0),(1,-2)$, or $(-5,2)$, depending on the mirror we use. Find a sequence of jumps that takes a peg at position $(1,0)$ to position $(1,2)$ that is different from the solution below.

Another formulation of the problem asks to find a word R in R_{1}, R_{2}, R_{3}, that, when interpreted as a composition of the affine transformations $R_{i}(v)=-\left(v-p_{i}\right)+p_{i}$, becomes the translation $R(v)=v+\binom{0}{2}$

Solution: I found two solutions given by (using the notation of words R): $R_{1} R_{3} R_{1} R_{2} R_{1} R_{2}$ and $R_{1} R_{2} R_{1} R_{3} R_{1} R_{2}$. Note that these are different from the giving solution since that solution is given by $R_{1} R_{2} R_{1} R_{2} R_{1} R_{3}$.

To show that these two solutions work, let us write: $R_{i}=-\left(v-p_{i}\right)+p_{i}=2 p_{i}-v$, i.e.:

$$
R_{1}(v)=2\binom{0}{0}-v=-v ; \quad R_{2}(v)=2\binom{1}{-1}-v=\binom{2}{-2}-v ; \quad R_{3}(v)=2\binom{-2}{1}-v=\binom{-4}{2}-v
$$

So that:
i) $\left(R_{1} R_{3} R_{1} R_{2} R_{1} R_{2}\right)(v)=\left(R_{1} R_{3} R_{1} R_{2} R_{1}\right)\left(\binom{2}{-2}-v\right)=\left(R_{1} R_{3} R_{1} R_{2}\right)\left(v-\binom{2}{-2}\right)=\left(R_{1} R_{3} R_{1}\right)\left(\left(\binom{2}{-2}-v+\binom{2}{-2}\right)\right)=$ $\left(R_{1} R_{3} R_{1}\right)\left(\binom{4}{-4}-v\right)=\left(R_{1} R_{3}\right)\left(v-\binom{4}{-4}\right)=R_{1}\left(\binom{-4}{2}-v+\binom{4}{-4}\right)=R_{1}\left(\binom{0}{-2}-v\right)=v-\binom{0}{-2}=v+\binom{0}{2}$
ii) $\left(R_{1} R_{2} R_{1} R_{3} R_{1} R_{2}\right)(v)=\left(R_{1} R_{2} R_{1} R_{3} R_{1}\right)\left(\binom{2}{-2}-v\right)=\left(R_{1} R_{2} R_{1} R_{3}\right)\left(v-\binom{2}{-2}\right)=\left(R_{1} R_{2} R_{1}\right)\left(\binom{-4}{2}-v+\binom{2}{-2}\right)=$ $\left(R_{1} R_{2} R_{1}\right)\left(\binom{-2}{0}-v\right)=\left(R_{1} R_{2}\right)\left(v-\binom{-2}{0}\right)=\left(R_{1}\right)\left(\binom{2}{-2}-v+\binom{-2}{0}\right)=\left(R_{1}\right)\left(\binom{0}{-2}-v\right)=v-\binom{0}{-2}=v+\binom{0}{2}$
(Ex. 3) Consider the projective plane $\mathbb{F}_{3} P^{2}$ over the field with 3 elements. Show that the two triangles with vertices at $p_{1}=(1: 1: 0), p_{2}=(1: 2: 1), p_{3}=(0: 2: 1)$ and $q_{1}=(1: 0: 0), q_{2}=(1: 1: 1), q_{3}=(0: 0: 1)$ are in perspective centrally. Then verify Desargue's theorem by computing the three intersections of corresponding lines (like $p_{1} p_{2}$ with $q_{1} q_{2}$), and showing that they are collinear.

Solution: To show that the two triangles are in perspective centrally, let us compute the intersection of the following lines: $p_{1} q_{1}$ and $p_{2} q_{2}, p_{1} q_{1}$ and $p_{3} q_{3}, p_{2} q_{2}$ and $p_{3} q_{3}$.
$p_{1} q_{1}$ and $p_{2} q_{2}: p_{1} \times q_{1}=(0,0,-1) \Longrightarrow-z=0 \Longleftrightarrow z=0 \Longrightarrow p_{1} q_{1}=\left\{(x: y: 0) \in \mathbb{F}_{3} P^{2}\right\}$
$p_{2} \times q_{2}=(1,0,-1) \Longrightarrow x-z=0 \Longleftrightarrow x=z \Longrightarrow p_{2} q_{2}=\left\{(x: y: x) \in \mathbb{F}_{3} P^{2}\right\}$
The intersection is given by $z=0=x \Longrightarrow(0: y: 0)$, a representative point would be $(0: 1: 0)$
$p_{1} q_{1}$ and $p_{3} q_{3}:$ We already know that $p_{1} q_{1}=\left\{(x: y: 0) \in \mathbb{F}_{3} P^{2}\right\}$
$p_{3} \times q_{3}=(2,0,0) \Longrightarrow 2 x=0 \Longleftrightarrow x=0 \Longrightarrow p_{3} q_{3}=\left\{(0: y: z) \in \mathbb{F}_{3} P^{2}\right\}$
The intersection is given by $z=0$ and $x=0 \Longrightarrow(0: y: 0)$, a representative point would be $(0: 1: 0)$
$p_{2} q_{2}$ and $p_{3} q_{3}:$ We already know that $p_{2} q_{2}=\left\{(x: y: x) \in \mathbb{F}_{3} P^{2}\right\}$
We already know that $p_{3} q_{3}=\left\{(0: y: z) \in \mathbb{F}_{3} P^{2}\right\}$
The intersection is given by $z=x=0 \Longrightarrow(0: y: 0)$, a representative point would be $(0: 1: 0)$
Showing that the point $(0: 1: 0)$ is the center of perspective, i.e., the two triangles are in perspective centrally.
Now, let us verify Desargue's theorem: first find $r_{i j}$ the intersection of $p_{i} p_{j}$ and $q_{i} q_{j}$ for $i \neq j$

$$
\begin{aligned}
r_{12}: & p_{1} \times p_{2}=(1,-1,1) \Longrightarrow p_{1} p_{2}=\left\{(x: y: z) \in \mathbb{F}_{3} P^{2}: x-y+z=0\right\} \\
& q_{1} \times q_{2}=(0,-1,1) \Longrightarrow q_{1} q_{2}=\left\{(x: y: y) \in \mathbb{F}_{3} P^{2}\right\} \\
& \text { Hence, the intersection is given by } x-y+z=0 \text { and } y=z \Longrightarrow x-z+z=0 \Longleftrightarrow x=0, \text { so }
\end{aligned}
$$

$$
r_{12}=(0: 1: 1)
$$

$r_{13}: p_{1} \times p_{3}=(1,-1,2) \Longrightarrow p_{1} p_{3}=\left\{(x: y: z) \in \mathbb{F}_{3} P^{2}: x-y+2 z=0\right\}$
$q_{1} \times q_{3}=(0,-1,0) \Longrightarrow q_{1} q_{3}=\left\{(x: 0: z) \in \mathbb{F}_{3} P^{2}\right\}$
Hence, the intersection is given by $x-y+2 z=0$ and $y=0 \Longrightarrow x-0+2 z=0 \Longleftrightarrow x=-2 z$, so

$$
r_{13}=(-2: 0: 1)
$$

$r_{23}: p_{2} \times p_{3}=(0,-1,2) \Longrightarrow p_{2} p_{3}=\left\{(x: 2 z: z) \in \mathbb{F}_{3} P^{2}\right\}$
$q_{2} \times q_{3}=(1,-1,0) \Longrightarrow q_{2} q_{3}=\left\{(x: x: z) \in \mathbb{F}_{3} P^{2}\right\}$
Hence, the intersection is given by $y=2 z$ and $x=y \Longrightarrow x=y=2 z$, so

$$
r_{23}=(2: 2: 1)
$$

Next, we can find the line through r_{12} and r_{13} by computing $r_{12} \times r_{13}=(1,-2,2)$, so the line is

$$
r_{12} r_{13}=\left\{(x: y: z) \in \mathbb{F}_{3} P^{2}: x-2 y+2 z=0\right\}
$$

Finally, note that r_{23} is in this line since it satisfies: $2-2(2)+2(1)=2-4+2=0$, showing that they are collinear.
(Ex. 4) Show that in the projective plane $\mathbb{F}_{3} P^{2}$ over the field with 3 elements, the set of points and lines form a configuration of type 13_{4}.

Solution: First, let us count how many points and lines are in the projective plane $\mathbb{F}_{3} P^{2}$. Let $P=\left\{\right.$ points in $\left.\mathbb{F}_{3} P^{2}\right\}$. Then, $|P|=(3 \cdot 3 \cdot 3-1) / 2=26 / 2=13$, because there are three choices for the first coordinates, three for the second and three for the third. We discard the point $(0: 0: 0)$ which is not in $\mathbb{F}_{3} P^{2}$. Finally, we divide by 2 because we counted each point exactly twice, the repetition coming from the point being multiplied by 2 .

Similarly, let $L=\left\{\right.$ lines $\left.\operatorname{in} \mathbb{F}_{3} P^{2}\right\}$. Then, $|L|=(3 \cdot 3 \cdot 3-1) / 2=26 / 2=13$. In this case we know that a line is
given by $a_{1} x+a_{2} y+a_{3} z=0$, where $a_{1}, a_{2}, a_{3} \in \mathbb{F}_{3}$. Again, there are three choices for a_{1}, three choices for a_{2} and three choices for a_{3}. Discard the choice $a_{1}=a_{2}=a_{3}=0$. We over counted each line twice since we line given by ($a_{1}: a_{2}: a_{3}$) is exactly the same as the line given by $\left(2 a_{1}: 2 a_{3}: 2 a_{3}\right)$.

Let us find each point and each line and show that in each line contains exactly 4 points and that each point is concurrent with exactly 4 lines. $P=\{(0: 0: 1),(0: 1: 0),(1: 0: 0),(0: 1: 1),(1: 0: 1),(1: 1: 0),(0: 1: 2),(1: 0:$ $2),(1: 2: 0),(1: 1: 1),(1: 1: 2),(1: 2: 1),(2: 1: 1)\}$ The set of lines can be interpreted as follow: if $(x: y: z) \in P$, then $x+y+z=0$ defines a line. For the points:
($0: 0: 1$) is in the lines (1) $x=0$, (2) $y=0$, (3) $x+y=0$ and (4) $x+2 y=0$.
$(0: 1: 0)$ is in the lines (1) $x=0$, (2) $z=0$, (3) $x+z=0$ and (4) $x+2 z=0$.
($1: 0: 0$) is in the lines (1) $y=0$, (2) $z=0$, (3) $y+z=0$ and (4) $y+2 z=0$.
($0: 1: 1$) is in the lines (1) $x=0$, (2) $y+2 z=0$, (3) $x+2 y+z=0$ and (4) $x+y+2 z=0$.
$(1: 0: 1)$ is in the lines (1) $y=0$, (2) $x+2 z=0,(3) x+y+2 z=0$ and (4) $2 x+y+z=0$.
(1:1:0) is in the lines (1) $z=0$, (2) $x+2 y=0$, (3) $x+2 y+z=0$ and (4) $2 x+y+z=0$.
$(0: 1: 2)$ is in the lines (1) $x=0$, (2) $y+z=0$, (3) $x+y+z=0$ and (4) $2 x+y+z=0$.
(1:0:2) is in the lines (1) $y=0$, (2) $x+z=0$, (3) $x+y+z=0$ and (4) $x+2 y+z=0$.
$(1: 2: 0)$ is in the lines (1) $z=0$, (2) $x+y=0$, (3) $x+y+z=0$ and (4) $x+y+2 z=0$.
$(1: 1: 1)$ is in the lines (1) $x+y+z=0$, (2) $x+2 y=0,(3) x+2 z=0$ and (4) $y+2 z=0$.
(1:1:2) is in the lines (1) $x+2 y=0$, (2) $x+z=0$, (3) $y+z=0$ and (4) $x+y+2 z=0$.
(1:2:1) is in the lines (1) $x+y=0$, (2) $y+z=0$, (3) $x+2 z=0$ and (4) $x+2 y+z=0$.
(2:1:1) is in the lines (1) $x+y=0$, (2) $x+z=0$, (3) $y+2 z=0$ and (4) $2 x+y+z=0$.
Now, for the lines:
$x=0$ contains the points: (1) $(0: 0: 1),(2)(0: 1: 0),(3)(0: 1: 1)$ and (4) $(0: 1: 2)$.
$y=0$ contains the points: (1) $(0: 0: 1),(2)(1: 0: 0),(3)(1: 0: 1)$ and (4) $(1: 0: 2)$.
$z=0$ contains the points: (1) $(0: 1: 0),(2)(1: 0: 0),(3)(1: 1: 0)$ and (4) $(1: 2: 0)$.
$x+y=0$ contains the points: (1) $(0: 0: 1)$, (2) $(1: 2: 1),(3)(1: 2: 0)$ and (4) $(2: 1: 1)$.
$x+z=0$ contains the points: (1) $(0: 1: 0),(2)(1: 0: 2),(3)(1: 1: 2)$ and (4) $(2: 1: 1)$.
$y+z=0$ contains the points: (1) $(1: 0: 0),(2)(0: 1: 2),(3)(1: 1: 2)$ and (4) $(1: 2: 1)$.
$x+2 y=0$ contains the points: (1) $(0: 0: 1),(2)(1: 1: 0),(3)(1: 1: 1)$ and (4) $(1: 1: 2)$.
$x+2 z=0$ contains the points: (1) $(0: 1: 0),(2)(1: 0: 1),(3)(1: 2: 1)$ and (4) $(1: 1: 1)$.
$y+2 z=0$ contains the points: (1) $(1: 0: 0),(2)(0: 1: 1),(3)(1: 1: 1)$ and (4) $(2: 1: 1)$.
$x+y+z=0$ contains the points: $(1)(0: 1: 2),(2)(1: 0: 2),(3)(1: 2: 0)$ and $(4)(1: 1: 1)$.
$x+y+2 z=0$ contains the points: $(1)(0: 1: 1)$, (2) $(1: 0: 1),(3)(1: 2: 0)$ and (4) $(1: 1: 2)$.
$x+2 y+z=0$ contains the points: (1) $(0: 1: 1)$, (2) $(1: 1: 0),(3)(1: 0: 2)$ and (4) $(1: 2: 1)$.
$2 x+y+z=0$ contains the points: $(1)(1: 0: 1),(2)(1: 1: 0),(3)(0: 1: 2)$ and $(4)(2: 1: 1)$.
(Ex. 5) Show that the Hesse configuration can be realized in the complex projective plane $\mathbb{C} P^{2}$ by writing

$$
\begin{array}{ccc}
p_{00}=(0:-1: 1) & p_{01}=(-1: 0: 1) & p_{02}=(-1: 1: 0) \\
p_{10}=(0: y: 1) & p_{11}=(x: 0: 1) & p_{12}=(y: 1: 0) \\
p_{20}=(0: x: 1) & p_{21}=(y: 0: 1) & p_{22}=(x: 1: 0)
\end{array}
$$

for suitable complex numbers $x \neq y$
Solution: If the Hesse configuration is to be realized in the complex projective plane, then the points p_{10}, p_{11} and p_{12} need to be collinear. Using the determinant condition for collinearity of points we get that:

$$
\operatorname{det}\left[\left(\begin{array}{lll}
0 & y & 1 \\
x & 0 & 1 \\
y & 1 & 0
\end{array}\right)\right]=0 \Longleftrightarrow-y\left(\begin{array}{ll}
x & 1 \\
y & 0
\end{array}\right)+\left(\begin{array}{ll}
x & 0 \\
y & 1
\end{array}\right)=0 \Longleftrightarrow-y(-y)+x=0 \Longleftrightarrow y^{2}+x=0
$$

Likewise, the points p_{20}, p_{21} and p_{22} need to be collinear and so:

$$
\operatorname{det}\left[\left(\begin{array}{lll}
0 & x & 1 \\
y & 0 & 1 \\
x & 1 & 0
\end{array}\right)\right]=0 \Longleftrightarrow-x\left(\begin{array}{ll}
y & 1 \\
x & 0
\end{array}\right)+\left(\begin{array}{ll}
y & 0 \\
x & 1
\end{array}\right)=0 \Longleftrightarrow-x(-x)+y=0 \Longleftrightarrow x^{2}+y=0
$$

Also, the points p_{10}, p_{01} and p_{22} need to be collinear:

$$
\operatorname{det}\left[\left(\begin{array}{ccc}
0 & y & 1 \\
-1 & 0 & 1 \\
x & 1 & 0
\end{array}\right)\right]=0 \Longleftrightarrow-y\left(\begin{array}{cc}
-1 & 1 \\
x & 0
\end{array}\right)+\left(\begin{array}{cc}
-1 & 0 \\
x & 1
\end{array}\right)=0 \Longleftrightarrow-y(-x)-1=0 \Longleftrightarrow x y-1=0
$$

Again, the points p_{20}, p_{01} and p_{12} need to be collinear:
$\operatorname{det}\left[\left(\begin{array}{ccc}0 & x & 1 \\ -1 & 0 & 1 \\ y & 1 & 0\end{array}\right)\right]=0 \Longleftrightarrow-x\left(\begin{array}{cc}-1 & 1 \\ y & 0\end{array}\right)+\left(\begin{array}{cc}-1 & 0 \\ y & 1\end{array}\right)=0 \Longleftrightarrow-x(-y)-1=0 \Longleftrightarrow x y-1=0$ this implies $x \neq 0, y \neq 0$
Note that any other choice of three points $p_{i j}$ satisfying the Hesse configuration, i.e., being collinear in the Hesse configuration, will yield a zero determinant, providing no further information. Therefore, we have the following system:

$$
\left\{\begin{array}{l}
y^{2}+x=0 \quad \Longrightarrow \quad\left(-x^{2}\right)^{2}+x=0 \quad \Longrightarrow \quad x^{4}+x=0 \quad \Longrightarrow \quad x\left(x^{3}+1\right)=0 \\
x^{2}+y=0 \\
x y-1=0
\end{array} \quad y=-x^{2} \begin{array}{l}
\end{array}\right\}
$$

We need to find the solutions of $x\left(x^{3}+1\right)=0$ and then solve for y. The equation $x\left(x^{3}+1\right)=0$ implies that $x=0$ OR $x^{3}-1=0$. The solution $x=0$ contradicts the equation $x y-1=0$, so we discard this solution. The problem reduces to finding all roots of the polynomial $x^{3}+1$. Clearly, one root is -1 since, $-1^{3}+1=-1+1=0$. Hence, the polynomial $x^{3}+1$ is divisible by $(x+1)$, yielding: $x^{3}+1=(x+1)\left(x^{2}-x+1\right)$.

Applying quadratic formula: $x^{2}-x+1=0 \Longleftrightarrow x=\frac{1 \pm \sqrt{1-4}}{2}=\frac{1 \pm \sqrt{3} i}{2}$. Therefore,

$$
x^{3}+1=(x+1)\left(x^{2}-x+1\right)=(x+1)\left(x-\left(\frac{1+\sqrt{3} i}{2}\right)\right)\left(x-\left(\frac{1-\sqrt{3} i}{2}\right)\right)
$$

Finally, we can solve for y :
i) If $x=-1$ then $(-1) y-1=0 \Longleftrightarrow y=-1$. So $x=y=-1$. But we discard this solution since we need $x \neq y$.
ii) If $x=\left(\frac{1+\sqrt{3} i}{2}\right)$ then $\left(\frac{1+\sqrt{3} i}{2}\right) y-1=0 \Longleftrightarrow y=\left(\frac{2}{1+\sqrt{3} i}\right)=\left(\frac{2}{1+\sqrt{3} i}\right)\left(\frac{1-\sqrt{3} i}{1-\sqrt{3} i}\right)=\left(\frac{1-\sqrt{3} i}{2}\right)$

Therefore, one complex solution is $(x, y)=\left(\frac{1+\sqrt{3} i}{2}, \frac{1-\sqrt{3} i}{2}\right)$
iii) If $x=\left(\frac{1-\sqrt{3} i}{2}\right)$ then $\left(\frac{1-\sqrt{3} i}{2}\right) y-1=0 \Longleftrightarrow y=\left(\frac{2}{1-\sqrt{3} i}\right)=\left(\frac{2}{1-\sqrt{3} i}\right)\left(\frac{1+\sqrt{3} i}{1+\sqrt{3} i}\right)=\left(\frac{1+\sqrt{3} i}{2}\right)$

Finally, another complex solution is

$$
(x, y)=\left(\frac{1-\sqrt{3} i}{2}, \frac{1+\sqrt{3} i}{2}\right)
$$

