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(Ex. 1) Show that for any rational number q ∈ Q, there are two distinct points P1 and P2 with integer coordinates such that
the line through P1 and P2 intersects the x-axis in (q, 0).

Solution: Let q =
a

b
∈ Q, where a, b ∈ Z and b 6= 0. Choose P1 = (1, b − a) and P2 = (0,−a). Clearly, since

a, b ∈ Z, both P1 and P2 have integer coordinates. Let
−→
l 1 be the line through points P1 and P2, and let

−→
l 2 be a

parametrization of the x-axis. Then:

−→
l 1(s) :=

(
1

b− a

)
+ s

[(
0

−a

)
−
(

1

b− a

)]
=

(
1

b− a

)
+ s

(
−1
−b

)
, where s ∈ R

−→
l 2(t) := t

(
1

0

)
, where t ∈ R

To find the intersection set these equal, i.e.,
−→
l 1 =

−→
l 2, which means:(

1

b− a

)
+ s

(
−1
−b

)
= t

(
1

0

)
, from which it follows:

1− s = t =⇒ =⇒ 1− (1− a/b) = t =⇒ t = a/b
b− a− sb = 0 s = 1− a/b

Therefore, t =
a

b
is the parameter for line

−→
l 2 for which it intersects with

−→
l 1. The coordinates of the intersection are:

−→
l 2 (a/b) =

a

b

(
1

0

)
=

(
a/b

0

)
=

(
q

0

)
So line

−→
l 1 intersects line

−→
l 2 at the point (q, 0) , showing the result.

(Ex. 2) Show that the set of pairs {(a, b) : a, b ∈ F3} becomes a field by defining

(a, b) + (a′, b′) = (a+ a′, b+ b′)

(a, b) · (a′, b′) = (aa′ − bb′, ab′ + a′b)

If we write 1 = (1, 0) and i = (0, 1), we can also write a+ bi = (a, b), and have the familiar identity i2 = −1.
Hint for the multiplicative inverse:

1

(a, b)
=

(a,−b)
a2 + b2

Why do we not divide by 0? Does this also work if we replace F3 with F5?

Solution: To check that the set of pairs, call it S = {(a, b) : a, b ∈ F3} is a field, we would have to check:

1) (S,+, 0) is an abelian group, where 0 = (0, 0).

2) (S∗, ·, 1) is an abelian group, where 1 = (1, 0).

3) For every s ∈ S, we must have 0 · s = s · 0 = 0.

4) For every s1, s2, s3 ∈ S, we must have s1 · (s2 + s3) = s1 · s2 + s1 · s3. Commutativity takes care of the other way.

Let us check:

1) To check that (S,+, 0) is an abelian group, we need to verify the following:

(1.1) S is closed under +, since F3 is closed under addition modulo 3.
(1.2) + is associative since the underlying operation is associative in F3.
(1.3) + is commutative since the underlying operation is commutative in F3.
(1.4) (0, 0) is the additive identity since (a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b).
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(1.5) Let (a, b) ∈ S. Then its additive inverse is (−a,−b) since (a, b) + (−a,−b) = (a+ (−a), b+ (−b)) = (0, 0)

2) To check that (S∗, ·, 1) is an abelian group, we need to verify the following:

(1.1) S∗ is closed under ·, since F3 is closed under addition and multiplication modulo 3.
(1.2) + is associative since the underlying operations (addition and multiplication) are associative in F3.
(1.3) + is commutative: Let (a, b), (a′, b′) ∈ S. Then,

(a, b) · (a′, b′) = (aa′ − bb′, ab′ + a′b) = (a′a− b′b, a′b+ ab′) = (a′, b′) · (a, b)

(1.4) (1, 0) is the multiplicative identity since (a, b) · (1, 0) = (a1− b0, a0 + 1b) = (a− 0, 0 + b) = (a, b).

(1.5) Let (a, b) ∈ S∗, i.e., (a, b) 6= (0, 0). Then its inverse is
1

(a, b)
=

(a,−b)
a2 + b2

since

(a, b) · 1

(a, b)
= (a, b) · (a,−b)

a2 + b2
=

(
a

a

a2 + b2
− b

−b
a2 + b2

, a
−b

a2 + b2
+

a

a2 + b2
b

)

=

(
a2 + b2

a2 + b2
,
−ab

a2 + b2
+

ab

a2 + b2

)
= (1, 0)

Note that we do not divide by 0 here because a2 + b2 6= 0 whenever a, b ∈ F∗3. Indeed,

12 + 02 = 1, 12 + 12 = 2, 12 + 22 = 2, 22 + 02 = 1, 22 + 22 = 2 (commutativity takes care of the rest)

3) Let (a, b) ∈ S. Then, (a, b) · (0, 0) = (a0− b0, a0 + 0b) = (0, 0)

4) Let (a, b), (c, d), (e, f) ∈ S. Then:

(a, b) · [(c, d) + (e, f)] = (a, b) · (c+ e, d+ f) = (a(c+ e)− b(d+ f), a(d+ f) + (c+ e)b)

[(a, b) · (c, d)] + [(a, b) · (e, f)] = (ac− bd, ad+ cb) + (ae− bf, af + eb) = (ac− bd+ ae− bf, ad+ cb+ af + eb)
= (a(c+ e)− b(d+ f), a(d+ f), (c+ e)b)

Hence, the distributive property holds.

Note that this does not work if we replace F3 with F5, because we would divide by zero for some multiplicative inverses,
for example 12 + 22 = 5 = 0, and in particular the pair (1, 2) would not have a multiplicative inverse.

(Ex. 3) In this exercise, we will study the affine plane F2
3.

1. How many points are in F2
3?

2. How many lines are in F2
3?

3. How many lines are in F2
3 that pass through the origin (0, 0)?

4. How many points lie on each line?

Solution: Let F2
3 = {

(
a
b

)
: a, b ∈ F3}. Then

1. There are 3 choices for the first coordinate a and 3 choices for the second coordinate b. By the multiplication rule,
we have |F2

3| = 3× 3 = 9 , i.e., there are 9 points in F2
3.

2. Through every 2 distinct points there is exactly one line. Hence, there are
(
9

2

)
=

9 · 8
2

= 36 lines.

3. If we fix the point (0, 0), then we can choose 4 other non-parallel vectors as direction vectors to make a line through

this point, i.e., there are
(
4

1

)
= 4 lines through (0, 0). This follows from the fact that if two lines have parallel

direction vector and have a common point then they are the same line.

4. Three points lie on each line. By definition, the line through the point p in the direction v is the set {p+tv : t ∈ F3}.
If t = 0, then we are in p. The only other two possible values for t are 1 and 2, so that we get three distinct points
p, p+ v and p+ 2v, provided that v 6= 0.
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(Ex. 4) In this exercise, we will study the special linear group SL2(F3).

1. How many 2× 2 matrices with entries in F3 have rank 0?
2. How many 2× 2 matrices with entries in F3 have rank 1?
3. How many 2× 2 matrices with entries in F3 have rank 2?
4. How many elements are in SL2(F3)?

Solution:

1. There is only 1 matrix of rank 0, i.e., the null matrix.
2. A rank 1 matrix means that there is only one linearly independent vector (viewed as a column vector), which will

mean that the other vector is a multiple of this vector. To construct a two dimensional vector we have 3 × 3 = 9
choices, however we must exclude the vector (0, 0) or otherwise we would get the null matrix. Therefore, there are
8 non-zero vectors in F2

3. Each of these vectors has three different multiples given by multiplication by 0, 1 or 2. So
there are 8×3 = 24 matrices of rank 1 without the (0, 0) vector. Using the (0, 0) vector we can get 8 more matrices
of rank 1. Therefore, there are 24 + 8 = 32

3. A rank 2 matrix means that there are two linearly independent vectors in the matrix. From part 2. we know that
there are 8 non-zero vectors. To construct a rank 2 matrix we must choose two different vectors. Given a vector
we must not choose any of its 3 multiples. Therefore, there are 8× (9− 3) = 8× 6 = 48 matrices of rank 2. Note
that there are 34 = 81, 2× 2 matrices in total and we have accounted for all of them since 1 + 32 + 48 = 81.

4. By definition SL2(F3) =

{
A =

(
a b
c d

)
: a, b, c, d ∈ F3, det(A) = 1

}
. To count how many matrices are in this set,

let us partition the space into three partitions according to the value for the first entry a.
a = 0 , in this case the determinant condition becomes 0d − bc = 1 ⇐⇒ −bc = 1 ⇐⇒ b = −1/c. There are three

choices for the value of d but only two for the value of c since we cannot divide by zero. Once c is chosen the
value of b is determined by the previous equation. Hence, there are 3 × 2 = 6 matrices in SL2(F3) with the
first entry being 0.

a = 1 , in this case the determinant condition becomes 1d− bc = 1 ⇐⇒ d = 1 + bc. There are three choices for the
value of b and three choices for the value of c. Once these choices are made the value of d is determined by the
previous equation. Hence, there are 3× 3 = 9 matrices in SL2(F3) with the first entry being 1.

a = 2 , in this case the determinant condition becomes 2d − bc = 1 ⇐⇒ d = (1 + bc)2−1. Again, There are three
choices for the value of b and three choices for the value of c. Once these choices are made the value of d is
determined by the previous equation. Hence, there are 3× 3 = 9 matrices in SL2(F3) with the first entry 2.

Since the three previous cases partition the space, their sum is the number of elements in SL2(F3), i.e.,

|SL2(F3)| = 6 + 9 + 9 = 24

(Ex. 5) Show that in any affine plane F2 over a field F, two lines are either equal, intersect in one point, or are disjoint and
parallel. Instructions: any line is given as a set {p+ tv : t ∈ F} where p ∈ F2 is a point and v ∈ F2 is a non-zero direction
vector. Two lines are parallel if they are given by proportional direction vectors. Show

1. If two lines are parallel and have at least one point in common, they are equal. It suffices that one line is contained
in other.

2. If two lines are non-parallel, they meet in precisely one point. Use that two independent vectors in F2 span F2.

Proof: Let two lines be given: {p1 + t1v1} and {p2 + t2v2}. Let us work each case.

1. Suppose the two lines are parallel. Then, v2 = sv1, for some s ∈ F. We can replace this in the equation:
p1 + t1v1 = p2 + t2v2 ⇐⇒ t1v1 − t2v2 = p2 − p1 ⇐⇒ t1v1 − t2sv1 = p2 − p1 ⇐⇒ (t1 − t2s)v1 = p2 − p1. There
are two cases: (1) p2 − p1 is a linearly dependent of v1, in which case p2 − p1 = av1 for some a ∈ F. Replace:
(t1 − t2s)v1 = av1 =⇒ a = (t1 − t2s). Solving for t2 shows that the lines are identical. (2) p2 − p1 is linearly
independent of v1. In this case the equation (t1 − t2s)v1 = p2 − p1 =⇒ (t1 − t2s)v1 − (p2 − p1) = 0, which would
imply that −1 = 0, a contradiction, and hence there are no common points to these two lines, i.e., the lines are
parallel.

2. Suppose that the lines are non-parallel. Then the direction vectors v1, v2 are linearly independent. Two independent
vectors in a 2-dimensional space span the whole space. In particular, {v1, v2}, form a basis for F2. In this case, we
can always solve for t1 and t2 in the equation: p1 + t1v1 = p2 + t2v2 ⇐⇒ t1v1 − t2v2 = p2 − p1. Moreover, this
solution is unique, giving us the common intersection point of the two lines.
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