M436 - Introduction to Geometries - Homework 2

Enrique Areyan September 12, 2014

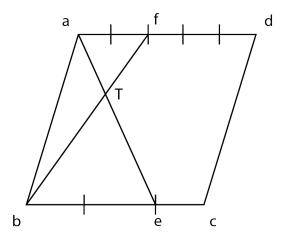
(Ex. 1) Solution: In the cover page.

(Ex. 2) Is the configuration in Figure 2 isomorphic to the Pappus configuration? Justify your decision.

Solution: No, the configuration in Figure 2 is not isomorphic to the Pappus configuration. Here is why: Choose an arbitrary point in the Pappus configuration. This point is not collinear with exactly two other points. Moreover, these two points are not collinear among themselves. Now, choose an arbitrary point in the configuration in Figure 2. Again, this point is not collinear with exactly two other points. However, these two points are collinear among themselves. This shows that the two configurations are not isomorphic.

(Ex. 3) In a parallelogram *abcd* the edge bc is divided by e in the proportion 2:1, and the edge ad is divided by f in the proportion 2:3. Determine in what proportions the segments ae and bf intersect each other.

Solution: Consider the following arbitrary parallelogram:



Let v be the vector \overrightarrow{bc} and w be the vector \overrightarrow{ba} . The point of intersection T can be written as:

$$T = (1 - s)b + sf$$
$$T = (1 - t)e + ta$$

Now, we can write all these points as linear combinations of v and w as follow: first note that b = 0v + 0w = 0 (the "origin" of our parallelogram). Next, $f = \frac{2}{5}v + w$, since the edge *ad* is divided by f in the proportion 2 : 3. Likewise, $e = \frac{2}{3}v$, since the edge *bc* is divided by e in the proportion 2 : 1. Finally, a = w. Replacing in previous equations:

$$T = (1-s)0 + s\left(\frac{2}{5}v + w\right) = \frac{2}{5}sv + sw \implies \text{(equating the two equations)} \qquad \frac{2}{5}sv + sw = \frac{2}{3}v - \frac{2}{3}tv + tw \implies T = (1-t)\frac{2}{3}v + tw = \frac{2}{3}v - \frac{2}{3}tv + tw \implies 2\frac{2}{5}sv + sw - \frac{2}{3}v + \frac{2}{3}tv - tw = 0 \implies v\left(\frac{2}{5}s - \frac{2}{3} + \frac{2}{3}t\right) + w\left(s - t\right) = 0 \implies \text{but } v \text{ and } w \text{ are linearly independent}$$
$$\frac{2}{5}s - \frac{2}{3} + \frac{2}{3}t = 0 \implies \frac{2}{5}s - \frac{2}{3} + \frac{2}{3}s = 0 \implies \frac{16}{15}s = \frac{2}{3} \implies s = \frac{5}{8}$$
$$s - t = 0, \text{ so } s = t$$

Hence, $s = t = \frac{5}{8}$. Therefore, the proportion in which the segments *ae* and *bf* intersect each other is

$$\sigma = \frac{s}{1-s} = \frac{\frac{5}{8}}{1-\frac{5}{8}} = \frac{\frac{5}{8}}{\frac{3}{8}} = \frac{5}{3}$$

That is, $\tau = \sigma = 5:3$

(Ex. 4) Consider the triangle $\Delta(p_1p_2p_3)$ with

$$p_1 = (1, -1)$$
 $p_2 = (4, 1)$ $p_3 = (2, 3)$

and the line through (4, -9) and (1, 19). Compute the ratios r_i with which this line intersects the three lines p_1p_2, p_2p_3 and p_3p_1 . Then compute $r_1r_2r_3$.

Solution:

For r_1 : First, let us find the point of intersection between p_1p_2 and the line l, call this point T.

$$\overrightarrow{l}(s) := \begin{pmatrix} 1\\19 \end{pmatrix} + s \left[\begin{pmatrix} 4\\-9 \end{pmatrix} - \begin{pmatrix} 1\\19 \end{pmatrix} \right] = \begin{pmatrix} 1\\19 \end{pmatrix} + s \begin{pmatrix} 3\\-28 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$
$$\overrightarrow{p_1 p_2}(t) := \begin{pmatrix} 1\\-1 \end{pmatrix} + t \left[\begin{pmatrix} 4\\1 \end{pmatrix} - \begin{pmatrix} 1\\-1 \end{pmatrix} \right] = \begin{pmatrix} 1\\-1 \end{pmatrix} + t \begin{pmatrix} 3\\2 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$

To find the intersection set these equal, i.e., $l' = \overrightarrow{p_1 p_2}$, which means:

$$\begin{pmatrix} 1\\19 \end{pmatrix} + s \begin{pmatrix} 3\\-28 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix} + t \begin{pmatrix} 3\\2 \end{pmatrix}, \text{ from which it follows:}$$

$$1+3s = 1+3t \implies s=t \implies \\ 19-28s = -1+2t \qquad 19+1 = 28s+2t \implies 20 = 28t+2t \implies t = 2/3$$

Therefore, $t = \frac{2}{3}$ is the parameter for line $\overrightarrow{p_1 p_2}$ for which it intersects with \overrightarrow{l} . The coordinates of the intersection are:

$$\overrightarrow{p_1p_2}(2/3) = \begin{pmatrix} 1\\-1 \end{pmatrix} + \frac{2}{3} \begin{pmatrix} 3\\2 \end{pmatrix} = \begin{pmatrix} 1\\-1 \end{pmatrix} + \begin{pmatrix} 2\\4/3 \end{pmatrix} = \begin{pmatrix} 3\\1/3 \end{pmatrix}$$

So line \overrightarrow{l} intersects line $\overrightarrow{p_1p_2}$ at the point T = (3, 1/3). Now we can find the ratio r_1 :

$$\binom{3}{1/3} = T = (1-t)\binom{1}{-1} + t\binom{4}{1} \implies 3 = 1-t+4t = 1+3t \implies t = 2/3$$

Finally, the proportion is given by $\tau_1 = \frac{2/3}{1-2/3} = 2$, so that $\left| r_1 = \frac{2}{1} \right|$

For r_2 : First, let us find the point of intersection between p_2p_3 and the line l, call this point T.

$$\overrightarrow{l}(s) := \begin{pmatrix} 1\\19 \end{pmatrix} + s \left[\begin{pmatrix} 4\\-9 \end{pmatrix} - \begin{pmatrix} 1\\19 \end{pmatrix} \right] = \begin{pmatrix} 1\\19 \end{pmatrix} + s \begin{pmatrix} 3\\-28 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$
$$\overrightarrow{p_2 p_3}(t) := \begin{pmatrix} 4\\1 \end{pmatrix} + t \left[\begin{pmatrix} 2\\3 \end{pmatrix} - \begin{pmatrix} 4\\1 \end{pmatrix} \right] = \begin{pmatrix} 4\\1 \end{pmatrix} + t \begin{pmatrix} -2\\2 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$

To find the intersection set these equal, i.e., $l' = \overrightarrow{p_2 p_3}$, which means:

$$\binom{1}{19} + s\binom{3}{-28} = \binom{4}{1} + t\binom{-2}{2}, \text{ from which it follows:}$$

$$1 + 3s = 4 - 2t \implies$$
 (adding the two equations) $20 - 25s = 5 \implies s = 3/5$
 $19 - 28s = 1 + 2t$

Therefore, $s = \frac{3}{5}$ is the parameter for line \overrightarrow{l} for which it intersects with $\overrightarrow{p_2p_3}$. The coordinates of the intersection are: $\overrightarrow{r} (2/5) = \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 3 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \begin{pmatrix} 9/5 \\ - \end{pmatrix} = \begin{pmatrix} 14/5 \\ - \end{pmatrix}$

$$\vec{l} (3/5) = \begin{pmatrix} 1\\19 \end{pmatrix} + \frac{3}{5} \begin{pmatrix} 3\\-28 \end{pmatrix} = \begin{pmatrix} 1\\19 \end{pmatrix} + \begin{pmatrix} 9/5\\-84/5 \end{pmatrix} = \begin{pmatrix} 14/5\\11/5 \end{pmatrix}$$

So line \overrightarrow{l} intersects line $\overrightarrow{p_2p_3}$ at the point T = (14/5, 11/5). Now we can find the ratio r_2 :

$$\binom{14/5}{11/5} = T = (1-t)\binom{4}{1} + t\binom{2}{3} \implies 11/5 = 1 - t + 3t = 1 + 2t \implies 2t = 6/5 \implies t = 3/5$$

Finally, the proportion is given by $\tau_2 = \frac{3/5}{1-3/5} = 3/2$, so that $r_2 = \frac{3}{2}$

For r_3 : First, let us find the point of intersection between p_3p_1 and the line l, call this point T.

$$\overrightarrow{l}(s) := \begin{pmatrix} 1\\19 \end{pmatrix} + s \left[\begin{pmatrix} 4\\-9 \end{pmatrix} - \begin{pmatrix} 1\\19 \end{pmatrix} \right] = \begin{pmatrix} 1\\19 \end{pmatrix} + s \begin{pmatrix} 3\\-28 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$
$$\overrightarrow{p_3p_1}(t) := \begin{pmatrix} 2\\3 \end{pmatrix} + t \left[\begin{pmatrix} 1\\-1 \end{pmatrix} - \begin{pmatrix} 2\\3 \end{pmatrix} \right] = \begin{pmatrix} 2\\3 \end{pmatrix} + t \begin{pmatrix} -1\\-4 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$

To find the intersection set these equal, i.e., $l' = \overrightarrow{p_3p_1}$, which means:

$$\begin{pmatrix} 1\\19 \end{pmatrix} + s \begin{pmatrix} 3\\-28 \end{pmatrix} = \begin{pmatrix} 2\\3 \end{pmatrix} + t \begin{pmatrix} -1\\-4 \end{pmatrix}, \text{ from which it follows:}$$

$$1+3s = 2-t \qquad \Longrightarrow \qquad 1-3s = t$$

$$19-28s = 3-4t \qquad \qquad 19-28s = 3-4[1-3s] \qquad \Longrightarrow \qquad 19-28s = -1+12s \qquad \Longrightarrow \qquad s = 1/2$$

Therefore, $s = \frac{1}{2}$ is the parameter for line \overrightarrow{l} for which it intersects with $\overrightarrow{p_3p_1}$. The coordinates of the intersection are:

$$\vec{l}(1/2) = \begin{pmatrix} 1\\19 \end{pmatrix} + \frac{1}{2} \begin{pmatrix} 3\\-28 \end{pmatrix} = \begin{pmatrix} 1\\19 \end{pmatrix} + \begin{pmatrix} 3/2\\-14 \end{pmatrix} = \begin{pmatrix} 5/2\\5 \end{pmatrix}$$

So line \overrightarrow{l} intersects line $\overrightarrow{p_3p_1}$ at the point T = (5/2, 5). Now we can find the ratio r_3 :

$$\binom{5/2}{5} = T = (1-t)\binom{2}{3} + t\binom{1}{-1} \implies 5 = 3 - 3t - t \implies 2 = -4t \implies t = -1/2$$

Finally, the proportion is given by $\tau_3 = \frac{-1/2}{1 - (-1/2)} = -1/3$, so that $r_3 = -\frac{1}{3}$

Therefore, $r_1 r_2 r_3 = \frac{2}{1} \frac{3}{2} (-\frac{1}{3}) = -1$

(Ex. 5) Let six points on the unit circle be given as $p_1 = (-4/5, -3/5), p_2 = (5/13, -12/13), p_3 = (4/5, -3/5)$ and $q_1 = (-3/5, 4/5), q_2 = (0, 1), q_3 = (4/5, 3/5)$. Denote the intersection of the two lines $p_i q_j$ and $p_j q_i$ by r_{ij} for $i \neq j$. Compute the coordinates of r_{12}, r_{13} and r_{23} , and show that the three points are collinear.

Solution:

For r_{12} : We need the intersection of p_1q_2 and p_2q_1 :

$$\overrightarrow{p_1q_2}(s) := \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + s \left[\begin{pmatrix} 0\\ 1 \end{pmatrix} - \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} \right] = \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + s \begin{pmatrix} 4/5\\ 8/5 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$

$$\overrightarrow{p_2q_1}(t) := \begin{pmatrix} 5/13\\ -12/13 \end{pmatrix} + t \left[\begin{pmatrix} -3/5\\ 4/5 \end{pmatrix} - \begin{pmatrix} 5/13\\ -12/13 \end{pmatrix} \right] = \begin{pmatrix} 5/13\\ -12/13 \end{pmatrix} + t \begin{pmatrix} -64/65\\ 112/65 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$

Set these two equations equal to each other, i.e., $\overline{p_1q_2} = \overline{p_2q_1}$

$$\binom{-4/5}{-3/5} + s\binom{4/5}{8/5} = \binom{5/13}{-12/13} + t\binom{-64/65}{112/65} \implies -4/5 + 4/5s = 5/13 - 64/65t \implies 4/5s = 5/13 + 4/5 - 64/65t \implies -3/5 + 8/5s = -12/13 + 112/65t$$

$$4/5s = 77/65 - 64/65t \implies 8/5s = 2[77/65 - 64/65t] \implies (replace in 2n eq.)$$

 $-3/5 + 2[77/65 - 64/65t] = -12/13 + 112/65t \implies 35/13 = 240/65t \implies t = 35/48$

The coordinates of r_{12} are given by

$$\overrightarrow{p_2q_1}(35/48) = \binom{5/13}{-12/13} + \frac{35}{48}\binom{-64/65}{112/65} = \binom{-1/3}{1/3}$$

Hence,

$$r_{12} = \boxed{(-1/3, 1/3)}$$

For r_{13} : We need the intersection of p_1q_3 and p_3q_1 :

$$\overrightarrow{p_1q_3}(s) := \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + s \left[\begin{pmatrix} 4/5\\ 3/5 \end{pmatrix} - \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} \right] = \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + s \begin{pmatrix} 8/5\\ 6/5 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$

$$\overrightarrow{p_3q_1}(t) := \begin{pmatrix} 4/5\\ -3/5 \end{pmatrix} + t \left[\begin{pmatrix} -3/5\\ 4/5 \end{pmatrix} - \begin{pmatrix} 4/5\\ -3/5 \end{pmatrix} \right] = \begin{pmatrix} 4/5\\ -3/5 \end{pmatrix} + t \begin{pmatrix} -7/5\\ 7/5 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$

Set these two equations equal to each other, i.e., $\overline{p_1q_3} = \overline{p_3q_1}$

$$\binom{-4/5}{-3/5} + s\binom{8/5}{6/5} = \binom{4/5}{-3/5} + t\binom{-7/5}{7/5} \implies -4/5 + 8/5s = 4/5 - 7/5t \implies \text{add the two equations} \implies -3/5 + 6/5s = -3/5 + 7/5t$$

$$-3/5 + 6/5s - 4/5 + 8/5s = -3/5 + 4/5 \implies 14/5s = 8/5 \implies s = 4/7$$

The coordinates of r_{13} are given by

$$\overrightarrow{p_1q_3}(4/7) = \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + \frac{4}{7} \begin{pmatrix} 8/5\\ 6/5 \end{pmatrix} = \begin{pmatrix} -4/5\\ -3/5 \end{pmatrix} + \begin{pmatrix} 32/35\\ 24/35 \end{pmatrix} = \begin{pmatrix} 4/35\\ 3/35 \end{pmatrix}$$
$$r_{13} = \boxed{(4/35, 3/35)}$$

Hence,

For
$$r_{23}$$
: We need the intersection of p_2q_3 and p_3q_2 :

$$\overrightarrow{p_2q_3}(s) := \begin{pmatrix} 5/13 \\ -12/13 \end{pmatrix} + s \left[\begin{pmatrix} 4/5 \\ 3/5 \end{pmatrix} - \begin{pmatrix} 5/13 \\ -12/13 \end{pmatrix} \right] = \begin{pmatrix} 5/13 \\ -12/13 \end{pmatrix} + s \begin{pmatrix} 27/65 \\ 99/65 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$
$$\overrightarrow{p_3q_2}(t) := \begin{pmatrix} 4/5 \\ -3/5 \end{pmatrix} + t \left[\begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 4/5 \\ -3/5 \end{pmatrix} \right] = \begin{pmatrix} 4/5 \\ -3/5 \end{pmatrix} + t \begin{pmatrix} -4/5 \\ 8/5 \end{pmatrix}, \text{ where } t \in \mathbb{R}$$
equations equal to each other, i.e., $\overrightarrow{p_2q_2} = \overrightarrow{p_2q_2}$

Set these two equations equal to each other, i.e., $\overrightarrow{p_2q_3} = \overrightarrow{p_3q_2}$

$$\binom{5/13}{-12/13} + s\binom{27/65}{99/65} = \binom{4/5}{-3/5} + t\binom{-4/5}{8/5} \implies 5/13 + 27/65s = 4/5 - 4/5t \implies \text{multiply 1st eq. by 2 and} \implies -12/13 + 99/65s = -3/5 + 8/5t \implies \text{add to 2nd eq.}$$

 $-12/13 + 99/65s + 10/13 + 54/65s = -3/5 + 8/5 \implies 153/65s - 2/13 = 1 \implies s = 25/51$

The coordinates of r_{23} are given by

$$\overrightarrow{p_2q_3}(25/51) = \binom{5/13}{-12/13} + \frac{25}{51}\binom{27/65}{99/65} = \binom{5/13}{-12/13} + \binom{45/221}{165/221} = \binom{10/17}{-3/17}$$

Hence,

$$r_{23} = \boxed{(10/17, -3/17)}$$

Now, the equation for the line through r_{12} and r_{13} is given by:

$$\overrightarrow{r_{12}r_{13}}(s) := \begin{pmatrix} -1/3\\ 1/3 \end{pmatrix} + s \left[\begin{pmatrix} 4/35\\ 3/35 \end{pmatrix} - \begin{pmatrix} -1/3\\ 1/3 \end{pmatrix} \right] = \begin{pmatrix} -1/3\\ 1/3 \end{pmatrix} + s \begin{pmatrix} 47/105\\ -26/105 \end{pmatrix}, \text{ where } s \in \mathbb{R}$$

Solving this vector equation in terms of x and y we get:

$$\binom{-1/3}{1/3} + s\binom{47/105}{-26/105} = \binom{x}{y} \implies 1/3 + 47/105s = x \implies (x+1/3)(105/47) = s \implies \text{Replace in 2nd eq.}$$

$$1/3 - 26/105s = y$$

$$y = 1/3 - (26/105)[(x + 1/3)(105/47)] \implies y = 1/3 - (26/47)(x + 1/3) \implies y = 7/47 - 26/47x$$

Finally, note that point r_{23} satisfies this equation since $-\frac{3}{17} = \frac{7}{47} - \frac{26}{47} \frac{10}{17}$. Therefore, all three points r_{12}, r_{13} and r_{23} lie in the line y = 7/47 - 26/47x, meaning that they are <u>collinear</u>.