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Enrique Areyan
December 3, 2014

(Ex. 1) Find the center and radius of the circle through the points p1 = (2/5, 1/5) and p2 = (3/5,−2/5) that is perpendicular
to the unit circle.

Solution: From previous homework we know that the angle of intersection φ between two circles is given by:

cos(φ) =
r2 + s2 − |p− q|2

2rs
, where r, s > 0 are the radii of the circles and p, q ∈ R2 are the centers

Take one of the circles to be the unit circle and the other to be our unknown circle. Then, p = (0, 0), r = 1,
q = (q1, q2) and s = s. We want φ = π/2. This implies that cos(φ) = 0. Hence:

0 =
12 + s2 − |(0, 0)− (q1, q2)|2

2 · 1 · s
=⇒ 0 = 1 + s2 − (q21 + q22) =⇒ q21 + q22 = 1 + s2

We also know that the circle with radius s and center (q1, q2), passes through the points (2/5, 1/5) and (3/5,−2/5). In
other words, these points satisfy the equations:

(2/5− q1)2 + (1/5− q2)2 = s2 =⇒ 1
5 + q21 + q22 − 4

5q1 −
2
5q2 = s2

(3/5− q1)2 + (−2/5− q2)2 = s2 =⇒ 13
25 + q21 + q22 − 6

5q1 +
4
5q2 = s2

Substract from the first equation the second equation to obtain:

5

25
− 13

25
− 4

5
q1 +

6

5
q1 −

2

5
q2 −

4

5
q2 = 0 =⇒ −8

5
+ 2q1 − 6q2 = 0 =⇒ q1 =

4

5
+ 3q2

Now we can find q2 by replacing q1 in terms of q2 as follows:

1

5
+ q21 + q22 −

4

5
q1 −

2

5
q2 = s2 =⇒ 1

5
+

(
4

5
+ 3q2

)2

+ q22 −
4

5

(
4

5
+ 3q2

)
− 2

5
q2 = s2

q21 + q22 = 1 + s2 =⇒
(
4

5
+ 3q2

)2

+ q22 = 1 + s2

Finally, replace s from the first equation into the second:(
4

5
+ 3q2

)2

+ q22 = 1 +
1

5
+

(
4

5
+ 3q2

)2

+ q22 −
4

5

(
4

5
+ 3q2

)
− 2

5
q2 =⇒

0 = 1 +
1

5
− 16

25
− 12

5
q2 −

2

5
q2 =⇒ 0 =

6

5
− 16

25
− q2

(
12

5
+

2

5

)
=⇒ 14

5
q2 =

14

25
=⇒ q2 =

5

25
=⇒ q2 =

1

5

We can solve for q1 by plugging the value for q2 into q1 = 4
5 + 3q2 =⇒ q1 = 4

5 + 3
5 =⇒ q1 =

7

5
.

Solve for the radius s from the equation: q21 + q22 = 1+ s2 =⇒
(
7
5

)2
+
(
1
5

)2
= 1+ s2 =⇒ s2 = 49

25 +
1
25 − 1 =⇒ s2 = 2− 1,

and so s = ±1, but the radius must be positive and hence, s = 1 .

In conclusion, the center of the circle through the points p1 = (2/5, 1/5) and p2 = (3/5,−2/5) that is perpendicu-
lar to the unit circle is (7/5, 1/5) and the radius is 1 .

The following graph depicts this solution.
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(Ex. 2) Find a hyperbolic isometry of the upper half plane that fixes (0, 1) and that rotates every geodesic through (0, 1) into
a geodesic perpendicular to the original one. Write the isometry as a Mobius transformation.

Solution: Let φ be the Mobius transformation we wish to find. We note that the following mappings must take
place:

φ(−1) = 0, φ(0) = 1, φ(1) =∞, φ(i) = i

We also know the general form of a Mobius transformation: φ(z) =
az + b

cz + d
, where a, b, c, d ∈ R. Plugging in we have:

φ(0) = 1 =
a · 0 + b

c · 0 + d
=
b

d
=⇒ b = d , from this point on we have: φ(z) =

az + b

cz + b

φ(1) =∞ =
a · 1 + b

c · 1 + b
=
a+ b

c+ b
=⇒ c+ b = 0 =⇒ c = −b , hence: φ(z) =

az + b

−bz + b

φ(−1) = 0 =
a · (−1) + b

−b · (−1) + b
=
−a+ b

2b
=⇒ −a+ b = 0 =⇒ a = b , thus: φ(z) =

az + b

−bz + b

φ(i) = i =
a · i+ b

−b · i+ b
=⇒ i(−bi+ b) = ai+ b =⇒ b+ bi = ai+ b =⇒ bi = ai =⇒ a = b ,we have: φ(z) =

bz + b

−bz + b

Finally, by algebra: φ(z) =
bz + b

−bz + b
=

b(z + 1)

b(−z + 1)
=

z + 1

−z + 1
. So the hyperbolic isometry φ of the upper half plane that

fixes (0, 1) and that rotates every geodesic through (0, 1) as a Mobius transformation is given by:

φ(z) =
z + 1

−z + 1

One can easily check that indeed this isometry fixes i:

φ(i) =
1 + i

1− i
=
i+ 1

1− i
· 1 + i

1 + i
=

1 + 2i+ i2

12 − i2
=

2i

2
= i

Since Mobius transformation preserve angles, the definition of φ will be enough to rotate every geodesic through (0, 1)
into a geodesic perpendicular to the original one.
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(Ex. 3) Given two circles in the plane that have no point in common, show that there is a Mobius transformation that takes
the two circles to concentric circles.

Solution: Let C1 and C2 be two circles in the plane that have no point in common of radii r1 and r2, and cen-
ters z1 and z2 respectively. Without loss of generality let us transform one of these circles, say C1, into the unit circle.
For this, we can defined the following Mobius transformation:

φ1(z) :=
z − z1
r1

Note that the image of C1 under φ1 is the unit circle. This is true because we know that Mobius transformation map
circles to circles. Moreover, we can see that φ1(z1) = (0, 0) so that the center of C1 is mapped to the origin in the
complex plane and the radius is shrink by a factor of r1 to normalize it to the unit circle.
Now, the image of the second circle C2 under φ1 is also a circle but in this case of center z2 − z1 and some radius, call
it r′2. At this point we have two cases:

(i) If |z2 − z1| < 1 then the circles are already nested and we don’t need to use φ2, which will be defined next.
(Alternative, you can think of φ2 to be defined as φ2(z) = z in this case).

(ii) Otherwise, if |z2 − z1| ≥ 1, then we need to nest the circles. For that, we will define the map φ2(z) := 1
z

Clearly, in any case the image under φ2 ◦φ1 of C1 is still the unit circle since the inversion 1/z fixes the unit circle. The
second circle C2 is now a circle centered at 1

z1−z0 with some radius r′′2 .

At this point we have produced two nested circles out of our initial circles C1 and C2. To finish we would need to
translate the center of C2 to the origin to obtain two concentric circles. For this, let us define a final Mobius transfor-
mation φ3 as follow:

φ3(z) :=
z − (z2 − z1)
1− (z2 − z1)z

Therefore, the image under φ3 ◦ φ2 ◦ φ1 of C1 is the unit circle and the image of C2 is a circle centered at (0, 0) with
some radius say r′′′2 An almost complete formula (assuming that C1, C2 are not nested -case (ii)) is given by:

φ3 ◦ φ2 ◦ φ1(z) =
( r1
z−z1 )− (z2 − z1)

1− (z2 − z1)( r1
z−z1 )

Note that the radii r2, r′2, and r′′2 could be defined as functions of r1 and r2, so there is no problem with these.

(Ex. 4) Given two circles one inside the other, form a chain of circles that touch consecutively and always the inner and outer
circle. Show that if this chain closes, it closes for all choices of initial circles.

Solution: Suppose you have two circles, one inside the other and you form a chain of circles that touch consecutively
and always the inner and outer circle. Further suppose that this chain closes. Then, we have two cases

(a) The circles are concentric, then we have a situation like this one:

Clearly, a chain of circles with this structure, i.e., such that the first two circles are concentric and the chain closes
could be started anywhere and it will still close. In other words, if this chain closes, it closes for all choices of initial
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circles. From the picture we can see that, by symmetry, any choice of placement for the initial circle will produce
a closed chain.

(b) The circles are not concentric. This case can be reduced to the previous case. I will explain how: take the two
initial circles. By hypothesis, one circle is inside the other meaning that they do not have any point in common.
In exercise 3 we prove that given two circles in the plane that have no point in common, there exists a Mobius
transformation that takes the two circles to concentric circles. Use this Mobius transformation to make the inner
circle be concentric with the outer. Mobius transformation preserve angles and tangency. Therefore, the chain of
closing circles will close with the two concentric circles giving a picture like the one above. Now using the same
reasoning as in the previous case, we could translate any of the circles in the chain and choose it to be the initial
circle. Finally, take the inverse of the Mobius Transformation, which we know it exists since with every invertible
complex 2-by-2 matrix

A =

(
a b
c d

)
we can associate the Mobius transformation:

φ(z) =
az + b

cz + d
.

To obtain a chain of closing circles in the original case with non concentric circles.

(Ex. 5) Start by choosing three mutually touching spheres, like the blue, rose, and translucent one in Figure 2. The translucent
one is touching the others externally. Begin a chain of spheres with a sphere touching all three spheres, like the yellow
sphere. Then consecutively add spheres (purple, green, pink, dark blue, moldy green) to the chain so that they touch
all three initial spheres and the previously added sphere. Show that the chain of spheres always closes afters six spheres.

Solution: As discussed in class, take the initial three mutually touching spheres to hyperbolic space (I’m thinking about
the upper half space model, and inverting about a given sphere). You will obtain two parallel planes and a sphere inside
touching each of these planes. Now you can start placing spheres to the chain so that they touch all three initial spheres
and the previously added sphere. In this plane you will immediately notice that the chain must close after six spheres
because there won’t be any more room for another sphere.
The following graph illustrate a cross-section of this space looked at from above:

This figure shows the six spheres that were added to the chain. The three initial sphere are: (1) a sphere in the middle
(not shown in the picture), (2) the top plane and (3) the bottom plane. After doing this process, take all nine spheres
back to Euclidean space to obtain the result.
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