
The Cauchy Criterion

Definition. We say that (sn) is a Cauchy sequence if for any ε > 0 there is N ∈ N
such that for all n, m satisfying n > N, m > N the following inequality holds:

| sn − sm | < ε. (1)

Remak. Here N depends on ε, of course.

Theorem 0.1
(i) Every converging sequence is a Cauchy sequence.
(ii) Every Cauchy sequence converges.

Proof. (i) This part is easy. Suppose that s = limn→∞ sn. Then, for a given ε > 0,
we can find an N s. t. ∀n > N , |s− sn| < ε

2
. If now m > N , then also |s− sm| < ε

2
.

But then

| sn − sm | = |( sn − s) + (s− sm) | ≤ | s− sn |+ | s− sm | < ε

2
+

ε

2
= ε. ¤

(ii) This statement part is deeper. It is convenient to present its proof as consisting
of three steps.
1. Note first that if (sn) is a Cauchy sequence, then it is bounded. To see this, set
ε = 1 and choose N so that ∀n,m > N we have: | sn − sm | < 1. (At this point we
use the fact that (sn) is a Cauchy sequence.) Fix any m0 > N ; the last inequality
now implies that for all n > N the following is true:

sm0 − 1 < sn < sm0 + 1.

But then for all n ≥ 1

min{s1, ..., sm0−1, sm0 − 1} ≤ sn ≤ max{s1, ..., sm0−1, sm0 + 1}

which proves our statement.
2. We are now in a position to apply to the sequence (sn) the Bolzano-Weierstrass
Theorem. Namely, since (sn) is bounded, it has a converging subsequence. Denote
this subsequence snk

, k = 1, 2, ... and let s = limk→∞ snk
.

3. It remains to show that in fact the whole sequence converges to s. To do that, fix
an ε > 0 and choose N1 so that ∀n,m > N1 we have: | sn− sm | < ε

2
(we use here the

Cauchy property of (sn)).
Choose N2 so that ∀nk > N2 and such that snk

belongs to the subsequence we have:
| s− snk

| < ε
2

(we use here that s = limk→∞ snk
).

Set N = max(N1, N2) and fix nk > N and such that snk
belongs to the subsequence.

Then for any n > N we have

| s− sn | = | (s− snk
) + (snk

− sn) | ≤ | snk
− s |+ | sn − snk

| < ε

2
+

ε

2
= ε. ¤
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