
The Cantor Set

The Cantor set is a famous set first constructed by Georg Cantor in 1883. It is simply a subset of the
interval [0, 1], but the set has some very interesting properties. We will first describe how to construct this
set, and then prove some interesting properties of the set.

Let I = [0, 1].
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Now remove the open third segments in each part. Let
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Continue in this way always removing the middle third of each segment to get A3, A4, . . ..
Note that A1 ⊇ A2 ⊇ A3 ⊇ · · · . And for each k ∈ N, Ak is the union of 2k closed intervals, each of length

3−k.
Let C = ∩∞

i=1Ai. Then C is the Cantor set.
Now we will prove some interesting properties of C.

1. C is compact.

Proof: Each Ak is a finite union of closed sets, so Ak is closed for all k by Corollary 1(b). Then
C = ∩Ak is also closed by Corollary 1(a). Also, C is bounded since C ⊆ [0, 1]. So by the Heine-Borel
Theorem, C is compact.

˜

2. Let x = 0.a1a2a3 . . . be the base 3 expansion of a number x ∈ [0, 1]. Then x ∈ C iff an ∈ {0, 2} for all
n ∈ N.

Proof: For a review of converting numbers to a different base, see
http://www.mathpath.org/concepts/Num/frac.htm. The fast explanation of base 3 is that the decimal
records which ”third” the number is in. For example 0.120 is in the second third in A1, and then a
third third in A2, and then a first third of A3.

Let x ∈ [0, 1] and let 0.a1a2a3 . . . be its base 3 expansion. Assume there is some k ∈ N such that ak = 1
in the expansion. Then 0.a1a2 . . . ak−1 ∈ Ak−1 but ak = 1 =⇒ x /∈ Ak =⇒ x /∈ C.

On the other hand, by the definition of base 3 expansion, if an ∈ {0, 2}, for all n ∈ N, then x ∈ C.

˜

3. C is uncountable.

Proof: This is the same diagonalizing proof that we did for showing R is uncountable. Suppose C is
countable, and list it’s elements as C = {x1, x2, x3, . . .}. Now look at the base 3 expansion of each of
those numbers. We can write

x1 = 0.a11a12a13 . . .

x2 = 0.a21a22a23 . . .

...

xk = 0.ak1ak2ak3 . . .

Where aij = 0 or 2 for all i, j.



Let y = 0.b1b2b3 . . . where

bi =

{

0 if aii = 2
2 if aii = 0

Then y 6= x1 since b1 6= a11, y 6= x2 since b2 6= a22, and so on. This implies that y /∈ C, but this
is a contradiction since bi ∈ {0, 2} for each i, and by the previous problem, y ∈ C. Therefore C is
uncountable.

˜

4. C contains no intervals.

Proof: Let (a, b) ⊆ [0, 1], and assume a < b. Let M = {n ∈ N : − log3(b − a) < n}. Notice
that (a, b) ⊆ [0, 1], so b − a < 1 which implies that − log3(b − a) > 0, and − log3(b − a) ∈ R, so
by the Archimedean property, there is some m ∈ M such that m ≤ k for all k ∈ M . So we have
− log3(b − a) < m which implies that 3−(− log

3
(b−a)) > 3−m. The left hand side of that inequality can

be simplified as follows: 3−(− log
3
(b−a)) = 3log

3
(b−a) = b − a = |b − a| < 3−m. But Am is the union of

subsets of [0, 1] of length 3−m which implies that (b, a) * Am. Therefore (b, a) * C.

˜

5.
1

4
∈ C, but

1

4
is not an endpoint of any of the intervals in any of the sets Ak for k ∈ N.

Proof: The base 3 decimal expansion of 1
4 is 0.02. Thus by part (b), 1

4 ∈ C. Notice that x ∈ Ak is an
endpoint if x = 0, x = 1, or if x = 3−k for some k ∈ N. Clearly 1

4 6= 0, 1, and for all k ∈ N, 1
4 6= 3−k.

Therefore 1
4 is not an endpoint.

˜


