M/S413 Final Exam

Enrique Areyan and Zach Wampler December 12, 2013

All problems from Rudin, chapter 5 on differentiation pages 114-119.
(4) If

$$
C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0
$$

where C_{0}, \cdots, C_{n} are real constants, prove that the equation

$$
C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}=0
$$

has at least one real root between 0 and 1 .
Proof: Let $f(x)=C_{0} x+\frac{C_{1}}{2} x^{2}+\cdots+\frac{C_{n-1}}{n} x^{n}+\frac{C_{n}}{n+1} x^{n+1}$ Note that:

$$
\begin{array}{lll}
f(0)=C_{0} 0+\frac{C_{1}}{2} 0^{2}+\cdots+\frac{C_{n-1}}{n} 0^{n}+\frac{C_{n}}{n+1} 0^{n+1} & =0+0+\cdots+0+0 & =0 \\
f(1) & =C_{0} 1+\frac{C_{1}}{2} 1^{2}+\cdots+\frac{C_{n-1}}{n} 1^{n}+\frac{C_{n}}{n+1} 1^{n+1}=C_{0}+\frac{C_{1}}{2}+\cdots+\frac{C_{n-1}}{n}+\frac{C_{n}}{n+1}=0 \text { (by hypothesis) }
\end{array}
$$

Hence $f(0)=f(1)=0$.
Now, let us apply the Mean Value Theorem by first checking that f satisfies its hypothesis on $(0,1)$:
(i) The function $f:[0,1] \rightarrow \mathbb{R}$ is continuos on $[0,1]$. This is because f is a polynomial which we know is continuos on its domain.
(ii) The function f is differentiable on $(0,1)$. Again, this is because f is a polynomial which we know is differentiable on its domain.
\therefore There exists $x_{0} \in(0,1)$ such that:

$$
\frac{f(1)-f(0)}{1-0}=f^{\prime}\left(x_{0}\right) \Longleftrightarrow f^{\prime}\left(x_{0}\right)=f(1)-f(0) \Longleftrightarrow f^{\prime}\left(x_{0}\right)=0-0 \Longleftrightarrow f^{\prime}\left(x_{0}\right)=0
$$

But note that $f^{\prime}(x)=C_{0}+C_{1} x+\cdots+C_{n-1} x^{n-1}+C_{n} x^{n}$, and by the above result we have found $x_{0} \in(0,1)$ s.t:

$$
C_{0}+C_{1} x_{0}+\cdots+C_{n-1} x_{0}^{n-1}+C_{n} x_{0}^{n}=0
$$

So x_{0} is one real root in $(0,1)$. Hence, we can conclude that the given equation has at least one real root.
(5) Suppose f is defined and differentiable for every $x>0$, and $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow+\infty$.

Put $g(x)=f(x+1)-f(x)$. Prove that $g(x) \rightarrow 0$ as $x \rightarrow+\infty$
Proof: Let $x \in \mathbb{R}, x>0$. Let us apply the Mean Value Theorem by first checking that f satisfies its hypothesis on $(x, x+1)$:
(i) The function $f:[x, x+1] \rightarrow \mathbb{R}$ is continuos on $[x, x+1]$. This is because by hypothesis f is differentiable for every $x>0$ and by theorem 5.2 we know that a differentiable function on x must be continuos at x.
(ii) The function f is differentiable on $(x, x+1)$. By hypothesis.
\therefore For all $x>0$, there exists $y=y(x) \in(x, x+1)$ such that:

$$
\frac{f(x+1)-f(x)}{x+1-x}=f^{\prime}(y) \Longleftrightarrow f^{\prime}(y)=f(x+1)-f(x)=g(x) \quad \text { By hypothesis }
$$

So we can conclude that $f^{\prime}(y)=g(x)$. Now, note that $y \in(x, x+1)$ so that $y>x$. Therefore

$$
\lim _{x \rightarrow \infty} y(x)=\infty \quad(\text { if } x \text { goes to infinity } y \text { must go to infinity because } y>x)
$$

But then,

$$
\lim _{x \rightarrow \infty} g(x)=\lim _{x \rightarrow \infty} f^{\prime}(y)=0 \quad \text { Since by hypothesis } f^{\prime}(x) \rightarrow 0 \text { as } x \rightarrow+\infty
$$

(17) Suppose f is a real, three times differentiable function on $[-1,1]$, such that

$$
f(-1)=0, \quad f(0)=0, \quad f(1)=1, \quad f^{\prime}(0)=0
$$

Prove that $f^{(3)}(x) \geq 3$ for some $x \in(-1,1)$.
Note that equality holds for $\frac{1}{2}\left(x^{3}+x^{2}\right)$.
Hint: Use Theorem 5.15, with $\alpha=0$ and $\beta= \pm 1$, to show that there exist $s \in(0,1)$ and $t \in(-1,0)$ s.t.:

$$
f^{(3)}(s)+f^{(3)}(t)=6
$$

Proof: Following the hint, let us use theorem 5.15 with $\alpha=0$ and $\beta= \pm 1$.
(i) For $\alpha=0$ and $\beta=1$, there exists $s \in(0,1)$ such that:

$$
f(1)=P(1)+\frac{f^{(3)}(s)}{3!}(1-0)^{3}, \quad \text { where: } P(1)=\frac{f^{(0)}(0)}{0!}(1-0)^{0}+\frac{f^{(1)}(0)}{1!}(1-0)^{1}+\frac{f^{(2)}(0)}{2!}(1-0)^{2}
$$

Hence,

$$
f(1)=\frac{f^{(0)}(0)}{0!}(1-0)^{0}+\frac{f^{(1)}(0)}{1!}(1-0)^{1}+\frac{f^{(2)}(0)}{2!}(1-0)^{2}+\frac{f^{(3)}(s)}{3!}(1-0)^{3}
$$

Equivalently,

$$
\begin{equation*}
f(1)=f(0)+f^{(1)}(0)+\frac{f^{(2)}(0)}{2}+\frac{f^{(3)}(s)}{6} \tag{*}
\end{equation*}
$$

(ii) For $\alpha=0$ and $\beta=-1$, there exists $t \in(0,1)$ such that:
$f(-1)=P(-1)+\frac{f^{(3)}(t)}{3!}(-1-0)^{3}, \quad$ where: $P(-1)=\frac{f^{(0)}(0)}{0!}(-1-0)^{0}+\frac{f^{(1)}(0)}{1!}(-1-0)^{1}+\frac{f^{(2)}(0)}{2!}(-1-0)^{2}$
Hence,

$$
f(-1)=\frac{f^{(0)}(0)}{0!}(-1-0)^{0}+\frac{f^{(1)}(0)}{1!}(-1-0)^{1}+\frac{f^{(2)}(0)}{2!}(-1-0)^{2}+\frac{f^{(3)}(t)}{3!}(-1-0)^{3}
$$

Equivalently,

$$
f(-1)=f(0)-f^{(1)}(0)+\frac{f^{(2)}(0)}{2}-\frac{f^{(3)}(t)}{6}
$$

Now consider $(*)-(\triangle)$:

$$
\begin{aligned}
f(1)-f(-1) & =f(0)+f^{(1)}(0)+\frac{f^{(2)}(0)}{2}+\frac{f^{(3)}(s)}{6}-\left(f(0)-f^{(1)}(0)+\frac{f^{(2)}(0)}{2}-\frac{f^{(3)}(t)}{6}\right) \Longleftrightarrow \\
1-0 & =2 f^{(1)}(0)+\frac{f^{(3)}(s)}{6}+\frac{f^{(3)}(t)}{6} \quad \text { because } f(0)=f(-1)=0 \text { and } f(1)=1 \text { by hypothesis } \Longleftrightarrow \\
1 & =\frac{f^{(3)}(s)}{6}+\frac{f^{(3)}(t)}{6} \quad \text { because } f^{(1)}(0)=0 \text { by hypothesis } \Longleftrightarrow \\
6 & =f^{(3)}(s)+f^{(3)}(t) \quad \text { multiplying by } 6
\end{aligned}
$$

Hence, there exists $s \in(0,1)$ and $t \in(-1,0)$ such that $f^{(3)}(s)+f^{(3)}(t)=6$.
Finally, we know that either s or t or both are going to satisfy the result we want, for suppose (for a contradiction) that both $f^{(3)}(s)<3$ and $f^{(3)}(t)<3$. Then $f^{(3)}(s)+f^{(3)}(t)<3+3=6$, a contradiction with $f^{(3)}(s)+f^{(3)}(t)=6$. Hence, $f^{(3)}(s) \geq 3$ or $f^{(3)}(t) \geq 3$, so $f^{(3)}(x) \geq 3$ for some $x \in(-1,1)$.

