M403 Homework 9

Enrique Areyan October 31, 2012

- (2.1) (i) **True.** By hypothesis if $x \in S$ then $x \in T$. Also, if $x \in T$ then $x \in X$. Hence, if $x \in S$ then $x \in X \iff S \subseteq X$
 - (ii) **False.** Since $f \circ g$ is not a well-defined function.
 - (iii) **True.** Since $g \circ f : X \to Z$ is a well-defined function.
 - (iv) **True.** Because by definition $X \times \emptyset\{(x, y) : x \in X \text{ and } y \in \emptyset\}$, but nothing belong to the empty set. Hence, $X \times \emptyset = \emptyset$
 - (v) **True.** Let $h : imgf \to imgf$ be defined as h(y) = y for all $y \in imgf$. Then $g : X \to imgf$ defined as $g = h \circ f$ is a surjection since for every $y \in imgf$ there is an $x \in X$ such that y = f(x) (by definition of imgf). Moreover, since $j \circ g : X \to Y$ and $f : X \to Y$ and $f(x) = (j \circ g)(x) = j(g(x)) = j(y) = y$, then $j \circ g = f$.
 - (vi) **False.** let $f : \mathbb{Z} \to \mathbb{N}$ be defined as f(n) = |n| and $g : \mathbb{N} \to \mathbb{Z}$ be defined as g(n) = n. Then, $f \circ g : \mathbb{N} \to \mathbb{N}$ is a well-defined function such that $f \circ g = 1_{\mathbb{N}}$, since: $(f \circ g)(n) = f(g(n)) = f(n) = |n| = n$. However, f is not a bijection since it is not injective. Indeed, f(2) = f(-2) = 2 but $2 \neq -2$.
 - (vii) **False.** Since $\frac{1}{2}, \frac{2}{4} \in \mathbb{Q}$ are such that $\frac{1}{2} = \frac{2}{4}$, but $f(\frac{1}{2}) = 1^2 2^2 = 1 4 = -3 \neq f(\frac{2}{4}) = 2^2 4^2 = 4 16 = -12$.
 - (viii) **False.** since $(g \circ f)(n) = g(f(n)) = g(n+1) = (n+1)^2 = n^2 + 2n + 1 \neq n(n+1)$
 - (ix) **True.** The map $conj : \mathbb{C} \to \mathbb{C}$ defined as conj(a + ib) = a ib is a bijection. It is <u>injective</u> since given $a_1 + ib_1, a_2 + ib_2 \in \mathbb{C}$, if $conj(a_1 + ib_1) = conj(a_2 + ib_2)$ then $a_1 ib_1 = a_2 ib_2$ which by equality of complex numbers means that $a_1 = a_2$ and $b_1 = b_2$ and hence, $a_1 + ib_1 = a_2 + ib_2$. It is <u>surjective</u> since for any $a + ib \in \mathbb{C}$ we can always take $a ib \in \mathbb{C}$ such that f(a ib) = ai + b. Since conj is both injective and surjective it is also bijective.

(2.3) (i) <u>Proof of:</u> $(A \cup B)' = A' \cap B'$

(ii) Proof of:
$$(A \cap B)' = A' \cup B'$$

(2.7) (i) Let $S \subseteq X$ and $f: X \to Y$. First note that by definition $f|S: S \to Y$ and $f \circ i: S \to Y$. Given $s \in S$:

 $\begin{array}{rcl} (f|S)(s) &=& f(s) & \text{by definition of } f|S \\ &=& f(i(s)) & \text{by definition } i(s) = s \text{ for all } s \in S \\ &=& (f \circ i)(s) & \text{function composition} \end{array}$

Hence, for any $s \in S$, $f|S(s) = f \circ i(s)$. Therefore, $f|S = f \circ i$

(ii) Consider the function $f': X \to A$ defined as $f' = j' \circ f$, where $j': Y \to A$ defined as j'(y) = y. The claim is that f' is a surjection since by hypothesis $im(f) = A \subseteq Y$ and so every element of the codomain of f' has a preimage. Moreover, if we consider the function $j \circ f': X \to Y$, where $j: A \to Y$ is the inclusion, i.e., j(a) = a for all $a \in A$, then we can conclude that $j \circ f' = j \circ (j' \circ f) = (j \circ j') \circ f = 1_Y \circ f = f$

(2.9) Suppose that $f: X \to Y$ is a bijection with two inverses, i.e., there exists two functions $f_1: Y \to X$ and $f_2: Y \to X$ such that:

$$f \circ f_1 = 1_Y$$
 and $f_1 \circ f = 1_X$
 $f \circ f_2 = 1_Y$ and $f_2 \circ f = 1_X$

But then:

 $\begin{array}{rcl} f_1 &=& f_1 \circ 1_Y & \text{ since } 1_Y \text{ is the identity function} \\ &=& f_1 \circ (f \circ f_2) & \text{ by definition of } 1_Y \\ &=& (f_1 \circ f) \circ f_2 & \text{ since function composition is associative} \\ &=& 1_X \circ f_2 & \text{ by definition of } 1_X \\ &=& f_2 & \text{ since } 1_X \text{ is the identity function} \end{array}$

Hence, $f_1 = f_2$, which means that the inverse of f is unique.

- (2.13) (i) We need only to show that f is injective if and only if f is surjective. The other implications follow from this, i.e., f bijective $\iff f$ injective and f surjective.
 - $(i) \Rightarrow (iii)$ Suppose f is injective. Suppose by way of contradiction that f is not surjective. Then $imgf \subset Y$ which means that |imgf| < |Y| = n. Let p = |imgf|, then p < n. Take p different elements of X, say $x_1, x_2, ..., x_p$. Apply f to these elements to obtain $f(x_1), f(x_2), ..., f(x_p) \in imgf$ by definition. Since f is injective, $f(x_i) \neq f(x_j)$ for all $1 \le i, j \le p$ where $i \ne j$ and hence, $imgf = \{f(x_1), f(x_2), ..., f(x_p)\}$. But since we only considered p elements in X and |X| = n > p, we know that there exists an element $x \in X$ such that $x \notin \{x_1, x_2, ..., x_p\}$. Apply f to this element to obtain $f(x) \in imgf$ by definition of image. So $f(x) = f(x_i)$ for $1 \le i \le p$, which contradicts the fact that f is injective.
 - $(iii) \Rightarrow (i)$ Suppose f is surjective. Suppose by way of contradiction that f is not injective. Then, there exists $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$ and $x_1 \neq x_2$. Construct the set $S = \{x_1, x_2\} \subset X$. By definition of set complementation we have that $X = S \cup S'$, where S' is the complement of S. Now, apply f to both sides of the equation: $f(X) = f(S \cup S')$. By definition of image we have that $imgf = f(S \cup S')$. Since f is surjective, imgf = Y and thus, $Y = f(S \cup S')$. By exercise 2.16 (i), $f(S \cup S') = f(S) \cup f(S')$, from which we conclude that $Y = f(S) \cup f(S') \Rightarrow$ since S and S' are disjoint sets: |Y| = |f(S)| + |f(S')|. But by constructing |f(S)| = 1 and $|f(S)| \leq n-2$. Hence, $n = |Y| \leq 1 + n 2 = n 1$, a contradiction. Therefore, f is injective.
 - (ii) Let P be the set of pigeons. |P| = 11. Let H be the set of holes. |H| = 10. Define the map sits $: P \to H$, that assigns to each pigeon in the set P a hole in the set H. Since both |P| and |H| are finite sets such that $|P| \neq |H|$, there exists no possible bijection between them. Since |P| > |H| and by (i), this means that the map sits is not injective, i.e., there exists $p_1, p_2 \in P$ such that $sits(p_1) = sits(p_2)$ and $p_1 \neq p_2$. This is the same as stating that there is one hole containing more than one pigeon (two different pigeons sitting on the same hole).
- (2.14) (i) Suppose both f and g are injective. Suppose also that, given $x_1, x_2 \in X$, $(g \circ f)(x_1) = (g \circ f)(x_2)$. Then:

 $\begin{array}{ll} (g \circ f)(x_1) = (g \circ f)(x_2) & \Longleftrightarrow & g(f(x_1)) = g(f(x_2)) \\ & \Longrightarrow & f(x_1) = f(x_2) \\ & \implies & x_1 = x_2 \end{array} \qquad \begin{array}{ll} \text{By definition of function composition} \\ \text{Since } g \text{ is injective and } f(x_1), f(x_2) \in Y \\ \text{Since } f \text{ is injective} \end{array}$

Hence, $g \circ f$ is injective.

- (ii) Suppose both f and g are surjective. Let $z \in Z$. Since g is surjective, there exists $y \in Y$ such that g(y) = z. Moreover, since f is surjective, there exists $x \in X$ such that y = f(x). Replacing this equation into our previous equation we obtain that $g(f(x)) = z \iff (g \circ f)(x) = z$. Therefore, given any $z \in Z$, we can always find a $x \in X$ such that $(g \circ f)(x) = z$ which means that $g \circ f$ is surjective.
- (iii) If both f, g are bijective then by definition both f, g are injective and surjective. In (i) we proved that if both f, g are injective then $g \circ f$ is also injective. In (ii) we proved that if f, g are surjective then $g \circ f$ is also surjective. Therefore, if we assume that both f, g are bijective, then we can conclude that f, g are both injective and surjective which by the aforementioned reasons means that $g \circ f$ is bijective as well.
- (iv) Suppose $g \circ f$ is a bijection. This means that $g \circ f$ is injective and surjective.
- Proof f is injective: Let $x_1, x_2 \in X$. Suppose that $f(x_1) = f(x_2)$. We can apply g to both sides of this equation to obtain $g(f(x_1)) = g(f(x_2))$, which by definition is the same as $(g \circ f)(x_1) = (g \circ f)(x_2)$. But, since $g \circ f$ is injective, we conclude that $x_1 = x_2$, which means that f is injective.
- Proof g is surjective: Let $z \in Z$. Since $g \circ f$ is a surjection, given $z \in Z$, there exists $x \in X$ such that $(g \circ f)(x) = z \iff g(f(x)) = z$. Since $f(x) \in Y$, call it y = f(x). Then, for any element $z \in Z$ it is true that there exists y such that g(y) = z, just take y = f(x). Hence, g is a surjection.