M403 Homework 9

Enrique Areyan
 October 31, 2012

(2.1) (i) True. By hypothesis if $x \in S$ then $x \in T$. Also, if $x \in T$ then $x \in X$. Hence, if $x \in S$ then $x \in X \Longleftrightarrow S \subseteq X$
(ii) False. Since $f \circ g$ is not a well-defined function.
(iii) True. Since $g \circ f: X \rightarrow Z$ is a well-defined function.
(iv) True. Because by definition $X \times \emptyset\{(x, y): x \in X$ and $y \in \emptyset\}$, but nothing belong to the empty set. Hence, $X \times \emptyset=\emptyset$
(v) True. Let $h: \operatorname{img} f \rightarrow i m g f$ be defined as $h(y)=y$ for all $y \in i m g f$. Then $g: X \rightarrow i m g f$ defined as $g=h \circ f$ is a surjection since for every $y \in i m g f$ there is an $x \in X$ such that $y=f(x)$ (by definition of $i m g f$). Moreover, since $j \circ g: X \rightarrow Y$ and $f: X \rightarrow Y$ and $f(x)=(j \circ g)(x)=j(g(x))=j(y)=y$, then $j \circ g=f$.
(vi) False. let $f: \mathbb{Z} \rightarrow \mathbb{N}$ be defined as $f(n)=|n|$ and $g: \mathbb{N} \rightarrow \mathbb{Z}$ be defined as $g(n)=n$. Then, $f \circ g: \mathbb{N} \rightarrow \mathbb{N}$ is a well-defined function such that $f \circ g=1_{\mathbb{N}}$, since: $(f \circ g)(n)=f(g(n))=f(n)=|n|=n$. However, f is not a bijection since it is not injective. Indeed, $f(2)=f(-2)=2$ but $2 \neq-2$.
(vii) False. Since $\frac{1}{2}, \frac{2}{4} \in \mathbb{Q}$ are such that $\frac{1}{2}=\frac{2}{4}$, but $f\left(\frac{1}{2}\right)=1^{2}-2^{2}=1-4=-3 \neq f\left(\frac{2}{4}\right)=2^{2}-4^{2}=4-16=-12$.
(viii) False. since $(g \circ f)(n)=g(f(n))=g(n+1)=(n+1)^{2}=n^{2}+2 n+1 \neq n(n+1)$
(ix) True. The map conj : $\mathbb{C} \rightarrow \mathbb{C}$ defined as $\operatorname{conj}(a+i b)=a-i b$ is a bijection. It is injective since given $a_{1}+i b_{1}, a_{2}+i b_{2} \in \mathbb{C}$, if $\operatorname{conj}\left(a_{1}+i b_{1}\right)=\operatorname{conj}\left(a_{2}+i b_{2}\right)$ then $a_{1}-i b_{1}=a_{2}-i b_{2}$ which by equality of complex numbers means that $a_{1}=a_{2}$ and $b_{1}=b_{2}$ and hence, $a_{1}+i b_{1}=a_{2}+i b_{2}$. It is surjective since for any $a+i b \in \mathbb{C}$ we can always take $a-i b \in \mathbb{C}$ such that $f(a-i b)=a i+b$. Since conj is both injective and surjective it is also bijective.
(i) Proof of: $(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$

$$
\begin{array}{rlrl}
\text { Let } x \in(A \cup B)^{\prime} & \Longleftrightarrow x \in X-(A \cup B) & & \text { By definition of set complement } \\
& \Longleftrightarrow x \in X \text { and } x \notin A \cup B & & \text { By definition of set difference } \\
& \Longleftrightarrow x \in X \text { and } x \notin A \text { and } x \notin B & & \text { By definition of membership in the union } \\
& \Longleftrightarrow x \neq(x \in X \text { and } x \notin A) \text { and }(x \in X \text { and } x \notin B) & \text { Grouping statements } \\
& \Longleftrightarrow x \in X-A \text { and } x \in X-B & & \text { By definition of set difference } \\
& \Longleftrightarrow x \in A^{\prime} \text { and } x \in B^{\prime} & & \text { By definition of set complement } \\
& \Longleftrightarrow x \in A^{\prime} \cap B^{\prime} & & \text { By definition of intersection }
\end{array}
$$

(ii) Proof of: $(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

Let $x \in(A \cap B)^{\prime}$	$\Longleftrightarrow x \in X-(A \cap B)$		By definition of set complement
	$\Longleftrightarrow x \in X$ and $x \notin A \cap B$		By definition of set difference
	$\Longleftrightarrow x \in X$ and $(x \notin A$ or $x \notin B)$	By definition of membership in the inter.	
	$\Longleftrightarrow x \neq(x \in X$ and $x \notin A)$ or $(x \in X$ and $x \notin B)$	Grouping statements	
	$\Longleftrightarrow x \in X-A$ or $x \in X-B$		By definition of set difference
	$\Longleftrightarrow x \in A^{\prime}$ or $x \in B^{\prime}$		By definition of set complement
	$\Longleftrightarrow x \in A^{\prime} \cup B^{\prime}$		By definition of union

(2.7) (i) Let $S \subseteq X$ and $f: X \rightarrow Y$. First note that by definition $f \mid S: S \rightarrow Y$ and $f \circ i: S \rightarrow Y$. Given $s \in S$:

$$
\begin{aligned}
(f \mid S)(s) & =f(s) & & \text { by definition of } f \mid S \\
& =f(i(s)) & & \text { by definition } i(s)=s \text { for all } s \in S \\
& =(f \circ i)(s) & & \text { function composition }
\end{aligned}
$$

Hence, for any $s \in S, f \mid S(s)=f \circ i(s)$. Therefore, $f \mid S=f \circ i$
(ii) Consider the function $f^{\prime}: X \rightarrow A$ defined as $f^{\prime}=j^{\prime} \circ f$, where $j^{\prime}: Y \rightarrow A$ defined as $j^{\prime}(y)=y$. The claim is that f^{\prime} is a surjection since by hypothesis $\operatorname{im}(f)=A \subseteq Y$ and so every element of the codomain of f^{\prime} has a preimage. Moreover, if we consider the function $j \circ f^{\prime}: X \rightarrow Y$, where $j: A \rightarrow Y$ is the inclusion, i.e., $j(a)=a$ for all $a \in A$, then we can conclude that $j \circ f^{\prime}=j \circ\left(j^{\prime} \circ f\right)=\left(j \circ j^{\prime}\right) \circ f=1_{Y} \circ f=f$
(2.9) Suppose that $f: X \rightarrow Y$ is a bijection with two inverses, i.e., there exists two functions $f_{1}: Y \rightarrow X$ and $f_{2}: Y \rightarrow X$ such that:

$$
\begin{aligned}
& f \circ f_{1}=1_{Y} \text { and } f_{1} \circ f=1_{X} \\
& f \circ f_{2}=1_{Y} \text { and } f_{2} \circ f=1_{X}
\end{aligned}
$$

But then:

$$
\begin{aligned}
f_{1} & =f_{1} \circ 1_{Y} & & \text { since } 1_{Y} \text { is the identity function } \\
& =f_{1} \circ\left(f \circ f_{2}\right) & & \text { by definition of } 1_{Y} \\
& =\left(f_{1} \circ f\right) \circ f_{2} & & \text { since function composition is associative } \\
& =1_{X} \circ f_{2} & & \text { by definition of } 1_{X} \\
& =f_{2} & & \text { since } 1_{X} \text { is the identity function }
\end{aligned}
$$

Hence, $f_{1}=f_{2}$, which means that the inverse of f is unique.
(i) We need only to show that f is injective if and only if f is surjective. The other implications follow from this, i.e., f bijective $\Longleftrightarrow f$ injective and f surjective.
$(i) \Rightarrow(i i i)$ Suppose f is injective. Suppose by way of contradiction that f is not surjective. Then $i m g f \subset Y$ which means that $|i m g f|<|Y|=n$. Let $p=|i m g f|$, then $p<n$. Take p different elements of X, say $x_{1}, x_{2}, \ldots, x_{p}$. Apply f to these elements to obtain $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{p}\right) \in i m g f$ by definition. Since f is injective, $f\left(x_{i}\right) \neq f\left(x_{j}\right)$ for all $1 \leq i, j \leq p$ where $i \neq j$ and hence, $\operatorname{img} f=\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{p}\right)\right\}$. But since we only considered p elements in X and $|X|=n>p$, we know that there exists an element $x \in X$ such that $x \notin\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$. Apply f to this element to obtain $f(x) \in i m g f$ by definition of image. So $f(x)=f\left(x_{i}\right)$ for $1 \leq i \leq p$, which contradicts the fact that f is injective. Therefore, f must be surjective.
$($ iii $) \Rightarrow(i)$ Suppose f is surjective. Suppose by way of contradiction that f is not injective. Then, there exists $x_{1}, x_{2} \in X$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$ and $x_{1} \neq x_{2}$. Construct the set $S=\left\{x_{1}, x_{2}\right\} \subset X$. By definition of set complementation we have that $X=S \cup S^{\prime}$, where S^{\prime} is the complement of S. Now, apply f to both sides of the equation: $f(X)=f\left(S \cup S^{\prime}\right)$. By definition of image we have that $i m g f=f\left(S \cup S^{\prime}\right)$. Since f is surjective, $i m g f=Y$ and thus, $Y=f\left(S \cup S^{\prime}\right)$. By exercise 2.16 (i), $f\left(S \cup S^{\prime}\right)=f(S) \cup f\left(S^{\prime}\right)$, from which we conclude that $Y=f(S) \cup f\left(S^{\prime}\right) \Rightarrow$ since S and S^{\prime} are disjoint sets: $|Y|=|f(S)|+\left|f\left(S^{\prime}\right)\right|$. But by constructing $|f(S)|=1$ and $|f(S)| \leq n-2$. Hence, $n=|Y| \leq 1+n-2=n-1$, a contradiction. Therefore, f is injective.
(ii) Let P be the set of pigeons. $|P|=11$. Let H be the set of holes. $|H|=10$. Define the map sits $: P \rightarrow H$, that assigns to each pigeon in the set P a hole in the set H. Since both $|P|$ and $|H|$ are finite sets such that $|P| \neq|H|$, there exists no possible bijection between them. Since $|P|>|H|$ and by (i), this means that the map sits is not injective, i.e., there exists $p_{1}, p_{2} \in P$ such that $\operatorname{sits}\left(p_{1}\right)=\operatorname{sits}\left(p_{2}\right)$ and $p_{1} \neq p_{2}$. This is the same as stating that there is one hole containing more than one pigeon (two different pigeons sitting on the same hole).
(i) Suppose both f and g are injective. Suppose also that, given $x_{1}, x_{2} \in X,(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. Then:

$$
\begin{array}{rll}
(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right) & \Longleftrightarrow g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right) & \tag{2.14}\\
\text { By definition of function composition } \\
& \Longrightarrow \quad f\left(x_{1}\right)=f\left(x_{2}\right) & \\
& \Longrightarrow \quad \text { Since } g \text { is injective and } f\left(x_{1}\right), f\left(x_{2}\right) \in Y \\
x_{1}=x_{2}
\end{array} \quad \text { Since } f \text { is injective }
$$

Hence, $g \circ f$ is injective.
(ii) Suppose both f and g are surjective. Let $z \in Z$. Since g is surjective, there exists $y \in Y$ such that $g(y)=z$. Moreover, since f is surjective, there exists $x \in X$ such that $y=f(x)$. Replacing this equation into our previous equation we obtain that $g(f(x))=z \Longleftrightarrow(g \circ f)(x)=z$. Therefore, given any $z \in Z$, we can always find a $x \in X$ such that $(g \circ f)(x)=z$ which means that $g \circ f$ is surjective.
(iii) If both f, g are bijective then by definition both f, g are injective and surjective. In (i) we proved that if both f, g are injective then $g \circ f$ is also injective. In (ii) we proved that if f, g are surjective then $g \circ f$ is also surjective. Therefore, if we assume that both f, g are bijective, then we can conclude that f, g are both injective and surjective which by the aforementioned reasons means that $g \circ f$ is bijective as well.
(iv) Suppose $g \circ f$ is a bijection. This means that $g \circ f$ is injective and surjective.

Proof f is injective: Let $x_{1}, x_{2} \in X$. Suppose that $f\left(x_{1}\right)=f\left(x_{2}\right)$. We can apply g to both sides of this equation to obtain $g\left(f\left(x_{1}\right)\right)=g\left(f\left(x_{2}\right)\right)$, which by definition is the same as $(g \circ f)\left(x_{1}\right)=(g \circ f)\left(x_{2}\right)$. But, since $g \circ f$ is injective, we conclude that $x_{1}=x_{2}$, which means that f is injective.
Proof g is surjective: Let $z \in Z$. Since $g \circ f$ is a surjection, given $z \in Z$, there exists $x \in X$ such that $(g \circ f)(x)=z \Longleftrightarrow$ $g(f(x))=z$. Since $f(x) \in Y$, call it $y=f(x)$. Then, for any element $z \in Z$ it is true that there exists y such that $g(y)=z$, just take $y=f(x)$. Hence, g is a surjection.

