M403 Homework 8

Enrique Areyan October 24, 2012

(1.77) (iii) False. Let $a=2$. Then $a^{6}=64=10 \cdot 6+4 \Rightarrow 64 \equiv 4(\bmod 6)$.
(iv) False. Let $a=2$. Then, $a^{4}=16=4 \cdot 4+0 \Rightarrow 16 \equiv 0(\bmod 4)$.
(vii) True. On the one hand, $n \equiv 1(\bmod 100) \Longleftrightarrow n=100 p+1$, where $p \in \mathbb{Z}$. On the other, $n \equiv 4(\bmod 1001) \Longleftrightarrow n=1001 q+4$, where $q \in \mathbb{Z}$. Hence, $100 p+1=1001 q+4 \Longleftrightarrow$

$$
\begin{aligned}
3 & =100 p-1001 r \\
& =100 p-(1000+1) r \\
& =100 p-1000 r-r \\
& =100(p-10 r)-r
\end{aligned}
$$

Hence, a possible solution is:

$$
\begin{gathered}
p-10 r=1 \text { and } r=97 \\
p-10 r=1 \Longleftrightarrow p-10 \cdot 97=1 \Longleftrightarrow p=971
\end{gathered}
$$

Substituting p in our first equation we find that the number n is:

$$
n=100 \cdot p+1=100 \cdot 971+1=97100+1=97101
$$

Indeed, it is the case that $97101 \equiv 1(\bmod 100)$ and $97101 \equiv 4(\bmod 1001)$
(viii) False. Let $p=5, a=3, m=5$ and $n=0$. Clearly 5 is prime. Also, $m \equiv n(\bmod p)$ since $5 \mid 5-0$. But, $a^{m}=3^{5}=243 \equiv 0(\bmod 3)$ and $3^{0}=1 \equiv 1(\bmod 3)$. Hence, $3^{5} \not \equiv 3^{0}(\bmod 3)$.
(1.78) (i) $3 x \equiv 2(\bmod 5) \Longleftrightarrow x=4+5 k$ for some $k \in \mathbb{Z} \Longleftrightarrow x \equiv 4(\bmod 5)$
(ii) $7 x \equiv 4(\bmod 10) \Longleftrightarrow x=2+10 k$ for some $k \in \mathbb{Z} \Longleftrightarrow x \equiv 2(\bmod 10)$
(iii) $243 x+17 \equiv 101(\bmod 725) \Longleftrightarrow x=63+725 k$ for some $k \in \mathbb{Z} \Longleftrightarrow x \equiv 63(\bmod 725)$
(iv) $4 x+3 \equiv 4(\bmod 5)$. The solution is $x=4$ since $4 x+3=4 \cdot 4+3=16+3=19=5 \cdot 3+4 \equiv 4(\bmod 5)$. The general solution is therefore $x=4+5 \cdot k$ for some $k \in \mathbb{Z} \Longleftrightarrow x \equiv 4(\bmod 5)$.
(v) $6 x+3 \equiv 4(\bmod 10) \Longleftrightarrow 6 x \equiv 1(\bmod 10)$. But, $\operatorname{gcd}(10,6)=\operatorname{gcd}(10-6,6)=\operatorname{gcd}(6,4)=\operatorname{gcd}(6-4,4)=$ $\operatorname{gcd}(4,2)=\operatorname{gcd}(4-2,2)=\operatorname{gcd}(2,2)=2>1$ and 2 does not divide 1 . Hence, this system has no solution.
(vi) $6 x+3 \equiv 1(\bmod 10)$. The solution is $x=3$ since $6 x+3=6 \cdot 3+3=18+3=21 \equiv 1(\bmod 10)$. The general solution is therefore $x=3+10 \cdot k$ for some $k \in \mathbb{Z} \Longleftrightarrow x \equiv 3(\bmod 10)$
(1.81) Since $100=2 \cdot 49+2,10^{100}=10^{2 \cdot 49+2}=10^{2 \cdot 49} \cdot 10^{2}$. Now, by the same fact used before, $10^{2} \equiv 2(\bmod 7)$. Moreover,

$$
\begin{aligned}
10^{2 \cdot 49} & =10^{2 \cdot 7 \cdot 7} & & \text { Exponent rule } \\
& =10^{7^{2 \cdot 7}} & & \text { Exponent rule } \\
& \equiv 10(\bmod 7) & & \text { By Fermat's little theorem, since } 7 \text { is prime } \\
& \equiv 3(\bmod 7) & &
\end{aligned}
$$

Combining this results we obtain: $10^{100} \equiv 3 \cdot 2=6(\bmod 7)$. Therefore, the remainder after dividing 10^{100} by 7 is 6 .
(1.84) The solutions depend on whether m is odd or even.

If m is odd, then the solutions are $r \equiv 0(\bmod m)$, Since $m \mid r \Longleftrightarrow r=m \cdot k$ for some $k \in \mathbb{Z}$ and then $2 r=2(m \cdot k) \equiv 0$ $(\bmod m)$. Note that in the case when m is odd these are the only solutions. Indeed, if anther solution $r=m \cdot k+m^{\prime}$, where $m^{\prime} \in \mathbb{Z}$ exists, then $2 r=2\left(m \cdot k+m^{\prime}\right)=2 \cdot m \cdot k+2 \cdot m^{\prime} \equiv 0+2 \cdot m^{\prime}(\bmod m)$, which is never congruent to 0 since m is odd and does not divive $2 \cdot m^{\prime}$ (an even number).

If m is even, then the solutions are $r \equiv \frac{m}{2}(\bmod m)$, since $m \left\lvert\, r-\frac{m}{2} \Longleftrightarrow r=m \cdot k+\frac{m}{2}\right.$. Indeed, $2 r=2\left(m \cdot k+\frac{m}{2}\right)=$ $2 \cdot m \cdot k+m \equiv 0(\bmod m)$. These are all the solutions (you can just vary k freely).
(1.89) Since $\operatorname{gcd}(a . m)=d>1$ then $d \mid a \Longleftrightarrow a=d a^{\prime}$ and $d \mid m \Longleftrightarrow m=d m^{\prime}$.

By definition, $a x \equiv b(\bmod b) \Longleftrightarrow a x=b+m k$ for some $k \in \mathbb{Z}$. Rearranging the equation: $a x-m k=b$. Since d is the $g c d(a, m)$, then $d a^{\prime} x-d m^{\prime} k=b \Longleftrightarrow d\left(a^{\prime} x-m^{\prime} k\right)=b \Longleftrightarrow d \mid b$, so if d does not divide b there is no solution.
(1.90) $x^{2} \equiv 1(\bmod 21) \Longleftrightarrow x^{2} \equiv 1(\bmod 7)$ AND $x^{2} \equiv 1(\bmod 3)$. The following table summarizes the possibilities for x :

$x=$	0	1	2
$x^{2}=$	0	1	4
$x^{2} \equiv(\bmod 3)$	0	1	1

$x=$	0	1	2	3	4	5	6
$x^{2}=$	0	1	4	9	16	25	36
$x^{2} \equiv(\bmod 7)$	0	1	4	2	2	4	1

$x=1$ OR $x=2$
$x=1$ OR $x=6$
Therefore, all the solutions are given by solving four different systems:

$$
\begin{aligned}
& \left\{\begin{array}{ll}
x \equiv 1 & (\bmod 3) \\
x \equiv 1 & (\bmod 7)
\end{array} \Rightarrow x \equiv 1(\bmod 21)\right. \text { by the Chinese Remainder Theorem. } \\
& \begin{cases}x \equiv 1 & (\bmod 3) \Rightarrow x=3 k+1 \\
x \equiv 6 & (\bmod 7) \Rightarrow 3 k+1 \equiv 6(\bmod 7) \Longleftrightarrow 3 k \equiv 5(\bmod 7) \Longleftrightarrow k=4+7 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}\end{cases}
\end{aligned}
$$

Hence, the solutions are: $x=3\left(4+7 k^{\prime}\right)+1=12+21 k^{\prime}+1=21 k^{\prime}+13 \Longleftrightarrow x \equiv 13(\bmod 21)$

$$
\left\{\begin{array}{ll}
x \equiv 2 & (\bmod 3) \Rightarrow x=3 k+2 \\
x \equiv 1 & (\bmod 7)
\end{array} \Rightarrow 3 k+2 \equiv 1(\bmod 7) \Longleftrightarrow 3 k \equiv-1(\bmod 7) \Longleftrightarrow k=2+7 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}\right.
$$

Hence, the solutions are: $x=3\left(2+7 k^{\prime}\right)+2=6+21 k^{\prime}+2=21 k^{\prime}+8 \Longleftrightarrow x \equiv 8(\bmod 21)$

$$
\left\{\begin{array}{l}
x \equiv 2 \quad(\bmod 3) \Rightarrow x=3 k+2 \\
x \equiv 6 \quad(\bmod 7) \Rightarrow 3 k+2 \equiv 6(\bmod 7) \Longleftrightarrow 3 k \equiv 4(\bmod 7) \Longleftrightarrow k=6+7 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}
\end{array}\right.
$$

Hence, the solutions are: $x=3\left(6+7 k^{\prime}\right)+2=18+21 k^{\prime}+2=21 k^{\prime}+20 \Longleftrightarrow x \equiv 20(\bmod 21)$
(1.91) (i) Since $\operatorname{gcd}(5,1)=\operatorname{gcd}(8,3)=1$; both of the following equations have a solution by their own.

$$
\begin{cases}x \equiv 2 & (\bmod 5) \Rightarrow x=5 k+2 \\ 3 x \equiv 1 & (\bmod 8) \Rightarrow 3(5 k+2) \equiv 1(\bmod 8) \Longleftrightarrow 15 k \equiv-5(\bmod 8) \Longleftrightarrow k=-3+8 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}\end{cases}
$$

Hence, the solutions are: $x=5\left(-3+8 k^{\prime}\right)+2=-15+40 k^{\prime}+2=35 k^{\prime}-13 \Longleftrightarrow x \equiv-13(\bmod 40)$
(ii) Since $\operatorname{gcd}(5,3)=\operatorname{gcd}(2,3)=1$; both of the following equations have a solution by their own.

$$
\left\{\begin{array}{l}
3 x \equiv 2 \quad(\bmod 5) \Rightarrow x=5 k+4 \\
2 x \equiv 1 \quad(\bmod 3) \Rightarrow 2(5 k+4) \equiv 1(\bmod 3) \Longleftrightarrow 10 k \equiv-7(\bmod 3) \Longleftrightarrow k=2+3 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}
\end{array}\right.
$$

$$
\text { Hence, the solutions are: } x=5\left(2+3 k^{\prime}\right)+4=10+15 k^{\prime}+4=15 k^{\prime}+14 \Longleftrightarrow x \equiv 14(\bmod 15)
$$

(1.92) We want to find the smallest positive integer x such that:

$$
\left\{\begin{array}{l}
x \equiv 4 \quad(\bmod 5) \Longleftrightarrow x=5 k+4 \\
x \equiv 3 \quad(\bmod 7) \Rightarrow 5 k+4 \equiv 3(\bmod) 7 \Longleftrightarrow 5 k \equiv-1(\bmod) 7 \Longleftrightarrow k=4+7 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z} \\
x \equiv 1 \quad(\bmod 9)
\end{array}\right.
$$

The solutions for the first two equations are: $x=5\left(4+7 k^{\prime}\right)+4=20+35 k^{\prime}+4=35 k^{\prime}+24 \Longleftrightarrow x \equiv 24$ (mod) 35
Now we can solve the simpler system:

$$
\left\{\begin{array}{l}
x \equiv 24 \quad(\bmod 35) \Rightarrow x=35 k+24 \\
x \equiv 1 \quad(\bmod 9) \Rightarrow 35 k+24 \equiv 1(\bmod 9) \Longleftrightarrow 35 k \equiv-23(\bmod 9) \Longleftrightarrow k=2+3 k^{\prime} \text { for some } k^{\prime} \in \mathbb{Z}
\end{array}\right.
$$

But, $-23 \equiv 4(\bmod 9)$, since $-23-4=-27=9 \cdot(-3)$. Also, $35 k=27 k+8 k \equiv 8 k(\bmod 9)$.
We can restate the equation $35 k \equiv-23(\bmod 9)$ as $8 k \equiv 4(\bmod 9)$. The solutions as $k=5+9 k^{\prime}$.
Hence, the solutions are: $x=35\left(5+9 k^{\prime}\right)+24=175+315 k^{\prime}+24=315 k^{\prime}+199 \Longleftrightarrow x \equiv 199(\bmod 315)$

$$
\left\{\begin{array}{l}
x \equiv 12 \quad(\bmod 25) \Rightarrow x=25 k+12 \tag{1.95}\\
x \equiv 2 \quad(\bmod 30) \Rightarrow 25 k+12 \equiv 2(\bmod 30) \Longleftrightarrow 25 k \equiv-10(\bmod 30)
\end{array}\right.
$$

But $-10 \equiv 20(\bmod 30)$, since it is true that $30-10-20$. Hence, we can rewrite the last equation as

$$
25 k \equiv 20(\bmod 30) \Longleftrightarrow k=2+30 k^{\prime}
$$

Hence, the solutions are: $x=25\left(2+30 k^{\prime}\right)+12=50+750 k^{\prime}+12=750 k^{\prime}+62 \Longleftrightarrow x \equiv 62(\bmod 750)$
(1.96) Let x and y be two solutions. Then both satisfy the following systems of equations:

$$
\left\{\begin{array} { l l }
{ x \equiv b } & { (\operatorname { m o d } m) } \\
{ x \equiv b ^ { \prime } } & { (\operatorname { m o d } m ^ { \prime }) }
\end{array} \quad \left\{\begin{array} { l l }
{ b \equiv y } & { (\operatorname { m o d } m) } \\
{ b ^ { \prime } \equiv y } & { (\operatorname { m o d } m ^ { \prime }) }
\end{array} \Rightarrow \text { Transitivity of mod } \quad \left\{\begin{array}{ll}
x \equiv y & (\bmod m) \\
x \equiv y & \left(\bmod m^{\prime}\right)
\end{array}\right.\right.\right.
$$

In particular, the last equations mean that $m \mid x-y$ and $m^{\prime} \mid x-y$. Since any integer that is divisible by m and m^{\prime} is also divisible by $l=\operatorname{lcm}\left(m, m^{\prime}\right)$, then $l \mid x-y \Longleftrightarrow x \equiv y(\bmod l)$

