M403 Homework 7

Enrique Areyan

October 17, 2012

(1.77) (i) True. This is a restatement of Corollary 1.59
(ii) False. Let $a=1, b=5$ and $m=4$. Then $(1+5)^{4}=6^{4}=1296 \equiv 0 \bmod 4$, and $1^{4}+5^{4}=1+625=626 \equiv 2 \bmod 4$
(v) False. Using the fact that if $a \equiv b \bmod m$ then $a^{n} \equiv b^{n} \bmod m$, we can verify this with modulo 10:

$a=$	0	1	2	3	4	5	6	7	8	9
$\bmod 10 a^{2}=$	0	1	4	9	6	5	6	9	4	1

We can write $5263980007=526398000 \cdot 10+7 \Longleftrightarrow 5263980007 \equiv 7 \bmod 10$, but 7 is not a remainder of a square mod 10. Hence, 5263980007 is not a perfect square.
(vi) False. Suppose to the contrary that there exists an integer n such that $n \equiv 1 \bmod 100$ and $n \equiv 4 \bmod 1000$. Then,

$$
100 \mid n-1 \Longleftrightarrow n-1=100 \cdot k \Longleftrightarrow n=100 \cdot k+1, \text { for some } k \in \mathbb{Z} \text { and }
$$

$1000 \mid n-4 \Longleftrightarrow n-4=1000 \cdot k^{\prime} \Longleftrightarrow n=1000 \cdot k^{\prime}+4$, for some $k^{\prime} \in \mathbb{Z} \Longleftrightarrow n=100 \cdot k^{\prime \prime}+4$ where $k^{\prime \prime}=10 \cdot k^{\prime}$ Contradicting the Division Algorithm, since dividing n by 100 leaves two different remainder according to the two previous equations. Therefore, there exists no such integer n.
(1.79) Let $m \in \mathbb{Z}^{+}$. Define m^{\prime} to be a number obtained by rearranging the digits of m. Is $m-m^{\prime}$ is a multiple of 9 ?.

Proof: Let d_{i} denote the i th digit of m and d_{i}^{\prime} the i th digit of m^{\prime}. We can write both m and m^{\prime} in decimal notation:

$$
\begin{aligned}
& m=d_{n} \cdot 10^{n}+d_{n-1} \cdot 10^{n-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0} \\
& m^{\prime}=d_{n}^{\prime} \cdot 10^{n}+d_{n-1}^{\prime} \cdot 10^{n-1}+\cdots+d_{2}^{\prime} \cdot 10^{2}+d_{1}^{\prime} \cdot 10^{1}+d_{0}^{\prime} \cdot 10^{0}
\end{aligned}
$$

Subtracting m^{\prime} from m :
$m-m^{\prime}=d_{n} \cdot 10^{n}+d_{n-1} \cdot 10^{n-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0}-d_{n}^{\prime} \cdot 10^{n}-d_{n-1}^{\prime} \cdot 10^{n-1}-\cdots-d_{2}^{\prime} \cdot 10^{2}-d_{1}^{\prime} \cdot 10^{1}-d_{0}^{\prime} \cdot 10^{0}$
In the very first homework of the semester we prove that $10^{n}=9 \cdot p+1 \Longleftrightarrow 10^{n} \equiv 1 \bmod 9$, for any n. Also, since $d_{i}=d_{j}^{\prime}$ for some j, we can group the same digits from m and m^{\prime} to obtain:

$$
m-m^{\prime} \equiv \sum_{i=1}^{n} d_{i}(1-1) \bmod 9=\sum_{i=1}^{n} d_{i} \cdot 0=\sum_{i=1}^{n} 0=0 \Rightarrow m-m^{\prime} \equiv 0 \bmod 9
$$

Which means that $9\left|m-m^{\prime}-0 \Longleftrightarrow 9\right| m-m^{\prime} \Longleftrightarrow m-m^{\prime}=9 \cdot k$ for some $k \in \mathbb{Z}$. Q.E.D.
(1.80) Let n be a positive integer and $n=d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0}$ be n 's decimal notation.
(\Rightarrow) Suppose that $11 \mid n \Longleftrightarrow n=11 \cdot p$ for some $p \in \mathbb{Z}$. By definition

$$
11 \cdot p=d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0}
$$

Since the powers of 10 are congruent to -1 or $1 \bmod 11$ alternatively, we can write (also, rearranging terms):

$$
d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0} \equiv d_{0}(1)+d_{1}(-1)+\cdots+(-1)^{k} d_{k} \bmod 11
$$

Hence, $11 \cdot p \equiv d_{0}-d_{1}+\cdots+(-1)^{k} d_{k} \bmod 11$. Call $S=d_{0}-d_{1}+\cdots+(-1)^{k} d_{k}$. Then:

$$
11 \mid S-11 \cdot p \Longleftrightarrow S-11 \cdot p=11 \cdot q \text { for some } q \in \mathbb{Z} \Longleftrightarrow S=11 \cdot q+11 \cdot p=11(q+p) \Longleftrightarrow 11 \mid S
$$

(\Leftarrow) Suppose that $11 \mid S$. Then
$11 \mid S \Longleftrightarrow S=11 \cdot p \Longleftrightarrow 11 \cdot p=d_{0}-d_{1}+\cdots+(-1)^{k} d_{k} \equiv d_{k} \cdot 10^{k}+d_{k-1} \cdot 10^{k-1}+\cdots+d_{2} \cdot 10^{2}+d_{1} \cdot 10^{1}+d_{0} \cdot 10^{0} \bmod 11=n$
Hence, $11 \cdot p \equiv n \bmod 11 \Longleftrightarrow 11|11 \cdot p-n \Longleftrightarrow 11 \cdot p-n=11 \cdot q \Longleftrightarrow n=11 \cdot p-11 \cdot q=11(p-q) \Longleftrightarrow 11| n$ Q.E.D.
(1.85) Prove that there are no integers x, y and z such that $x^{2}+y^{2}+z^{2}=999$.

Proof. If a is a perfect square, then, $a^{2} \equiv 0,1$, or $4 \bmod 8$. Since $999=8 \cdot 124+7 \Rightarrow 999 \equiv 7 \bmod 8$. By proposition 1.60 (i), we have that:

$$
\begin{aligned}
& x^{2} \equiv 0,1, \text { or } 4 \bmod 8 \\
& y^{2} \equiv 0,1, \text { or } 4 \bmod 8 \\
& z^{2} \equiv 0,1, \text { or } 4 \bmod 8
\end{aligned}
$$

Then the sum is going to be preserve moulo 8. This means that:

$$
\begin{aligned}
x^{2}+y^{2}+z^{2} & \equiv 0 \bmod 8 \Longleftrightarrow(0+0+0),(4+4+0),(4+0+4),(0+4+4) \\
& \equiv 1 \bmod 8 \Longleftrightarrow(1+0+0),(0+1+0),(0+0+1) \\
& \equiv 2 \bmod 8 \Longleftrightarrow(1+1+0),(0+1+1),(1+0+1) \\
& \equiv 3 \bmod 8 \Longleftrightarrow(1+1+1) \\
& \equiv 4 \bmod 8 \Longleftrightarrow(4+0+0),(0+4+0),(0+0+4),(4+4+4) \\
& \equiv 5 \bmod 8 \Longleftrightarrow(1+4+0),(0+1+4),(1+0+4),(4+1+0),(0+4+1),(4+1+0) \\
& \equiv 6 \bmod 8 \Longleftrightarrow(4+1+1),(1+4+1),(1+1+4) \\
& \equiv 9 \bmod 8 \Longleftrightarrow(4+4+1),(4+1+4),(1+4+4)
\end{aligned}
$$

All $3^{3}=27$ possibilities are represented above but none of these are $\equiv 7 \bmod 8$. Hence, there exists no integers x, y, z such that $x^{2}+y^{2}+z^{2}=999$.
(1.86) Prove that there is no perfect square whose two last digits are 35.

A first proof: if $a \equiv 5 \bmod 10$ then $a^{2} \equiv 5 \bmod 10$.In particular, this means that the only way a square a^{2} ends in 5 is that a also ends in 5 . Let $a=10 \cdot k+5$. Square it: $a^{2}=100 \cdot k^{2}+100 \cdot k+25=100\left(k^{2}+k\right)+25 \Longleftrightarrow a^{2} \equiv 25$ mod 100. Hence, the last two digits of a^{2} are 25 and never 35 .
A second proof: the following are all the equivalence classes $\bmod 100$ for i^{2}, where $i=0,1, \ldots, 100[1,4,9,16,25$, $36,49,64,81,0,21,44,69,96,25,56,89,24,61,0,41,84,29,76,25,76,29,84,41,0,61,24,89,56,25,96,69,44$, $21,0,81,64,49,36,25,16,9,4,1,0,1,4,9,16,25,36,49,64,81,0,21,44,69,96,25,56,89,24,61,0,41,84,29$, $76,25,76,29,84,41,0,61,24,89,56,25,96,69,44,21,0,81,64,49,36,25,16,9,4,1,0]$
None of these is 35 , hence there is no square whose two last digits are 35 .
(1.87) If x is an odd number not divisible by 3 , prove that $x^{2} \equiv 1 \bmod 24$.

Proof: let $x \in \mathbb{Z}$ be an odd number not divisible by 3 . Then, there exists a unique $r \in\{0,1, \ldots, 23\}$ such that $x \equiv r \bmod 24$, i.e., $x-r=24 \cdot k \Longleftrightarrow x=24 \cdot k+r$ for some $k \in \mathbb{Z}$. Note that since 24 is divisible by $2,2|x \Longleftrightarrow 2| r$, and since 24 is divisible by $3,3|x \Longleftrightarrow 3| r$. Also, if $x \equiv r \bmod 24$ then $x^{2} \equiv r^{2} \bmod 24$, so by all this, it suffices to look at odd r not divisible by 3 in $\{0,1, \ldots, 23\}$, and look at $r^{2} \bmod 24$ for such r. The following table summarizes the data:

$x=$	1	5	7	11	13	17	19	23
$x^{2}=$	1	25	49	121	169	289	361	529
$x^{2} \equiv \bmod 24$	1	1	1	1	1	1	1	1

(i) Let $S(n):(a+b)^{n} \equiv a^{n}+b^{n} \bmod 2$ for all a, b and for all $n \geq 1$.

Proof that $S(n)$ is true for all $n \geq 1$, by 2 nd form of induction.
Base Cases: $n=1 \Rightarrow(a+b)^{1}=a+b \Rightarrow S(1)$ is true. Also, $n=2 \Rightarrow(a+b)^{2}=a^{2}+2 a b+b^{2} \equiv a^{2}+b^{2} \bmod$ 2 , since $2 \mid 2 a b$. Finally, $n=3 \Rightarrow(a+b)^{3}=a^{3}+b^{3}+3 a b^{2}+3 a^{2} b=a^{3}+b^{3}+3 a b(b+a) \equiv a^{3}+b^{3} \bmod 2$, by analyzing parity of the term $3 a b(b+a)$, we find that is its always the case that $3 a b(b+a) \equiv 0$ mod 2 (See (*))
Inductive Step: Assume $S(k)$ is true for $k<n$. Then:

$$
\begin{aligned}
(a+b)^{n} & =(a+b)(a+b)^{n-1} & & \text { Exponent rule } \\
& \equiv(a+b)\left(a^{n-1}+b^{n-1}\right) \bmod 2 & & \text { Inductive Hypothesis } \\
& =a^{n}+a b^{n-1}+a^{n-1} b+b^{n} & & \text { Distributing } \\
& =\left(a^{n}+b^{n}\right)+a b\left(a^{n-2}+b^{n-2}\right) & & \text { Grouping } \\
& =\left(a^{n}+b^{n}\right)+a b(a+b)^{n-2} & & \text { IH } \\
& \equiv a^{n}+b^{n} \bmod 2 & & \text { By analyzing each case as follow }\left(^{*}\right):
\end{aligned}
$$

$\left(^{*}\right)$ If a is even and b is odd (or vice versa), then $a \cdot b \equiv 0 \bmod 2$. If both a and b are even OR both a and b are odd, then $a b(a+b)^{n-2}=a b(a+b)(a+b)^{n-3} \equiv 0 \bmod 2$ since $a+b$ is even. Q.E.D
(ii) Let $a=1$ and $b=1$. Then $(1+1)^{2}=2^{2}=4 \equiv 1 \bmod 3$. But $1^{2}+1^{2}=1+1=2 \equiv 2 \bmod 3$. Hence, $(a+b)^{2} \not \equiv a^{2}+b^{2} \bmod 3$

