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(1.77) (i) True. This is a restatement of Corollary 1.59

(ii) False. Let a = 1, b = 5 andm = 4. Then (1+5)4 = 64 = 1296 ≡ 0 mod 4, and 14+54 = 1+625 = 626 ≡ 2 mod 4

(v) False. Using the fact that if a ≡ b mod m then an ≡ bn mod m, we can verify this with modulo 10:

a = 0 1 2 3 4 5 6 7 8 9
mod 10 a2 = 0 1 4 9 6 5 6 9 4 1

We can write 5263980007 = 526398000 · 10 + 7 ⇐⇒ 5263980007 ≡ 7 mod 10, but 7 is not a remainder of a
square mod 10. Hence, 5263980007 is not a perfect square.

(vi) False. Suppose to the contrary that there exists an integer n such that n ≡ 1 mod 100 and n ≡ 4 mod 1000.
Then,

100|n− 1 ⇐⇒ n− 1 = 100 · k ⇐⇒ n = 100 · k + 1, for some k ∈ Z and

1000|n−4 ⇐⇒ n−4 = 1000 ·k′ ⇐⇒ n = 1000 ·k′+4, for some k′ ∈ Z ⇐⇒ n = 100 ·k′′+4 where k′′ = 10 ·k′

Contradicting the Division Algorithm, since dividing n by 100 leaves two different remainder according to the
two previous equations. Therefore, there exists no such integer n.

(1.79) Let m ∈ Z+. Define m′ to be a number obtained by rearranging the digits of m. Is m−m′ is a multiple of 9?.
Proof: Let di denote the ith digit of m and d′i the ith digit of m′. We can write both m and m′ in decimal notation:

m = dn · 10n + dn−1 · 10n−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100

m′ = d′n · 10n + d′n−1 · 10n−1 + · · ·+ d′2 · 102 + d′1 · 101 + d′0 · 100

Subtracting m′ from m:

m−m′ = dn ·10n+dn−1 ·10n−1+ · · ·+d2 ·102+d1 ·101+d0 ·100−d′n ·10n−d′n−1 ·10n−1−···−d′2 ·102−d′1 ·101−d′0 ·100

In the very first homework of the semester we prove that 10n = 9 · p+ 1 ⇐⇒ 10n ≡ 1 mod 9, for any n. Also, since
di = d′j for some j, we can group the same digits from m and m′ to obtain:

m−m′ ≡
n∑

i=1

di(1− 1) mod 9 =

n∑
i=1

di · 0 =

n∑
i=1

0 = 0⇒ m−m′ ≡ 0 mod 9

Which means that 9|m−m′ − 0 ⇐⇒ 9|m−m′ ⇐⇒ m−m′ = 9 · k for some k ∈ Z. Q.E.D.

(1.80) Let n be a positive integer and n = dk · 10k + dk−1 · 10k−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100 be n’s decimal notation.

(⇒) Suppose that 11|n ⇐⇒ n = 11 · p for some p ∈ Z. By definition

11 · p = dk · 10k + dk−1 · 10k−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100

Since the powers of 10 are congruent to −1 or 1 mod 11 alternatively, we can write (also, rearranging terms):

dk · 10k + dk−1 · 10k−1 + · · ·+ d2 · 102 + d1 · 101 + d0 · 100 ≡ d0(1) + d1(−1) + · · ·+ (−1)kdk mod 11

Hence, 11 · p ≡ d0 − d1 + · · ·+ (−1)kdk mod 11. Call S = d0 − d1 + · · ·+ (−1)kdk. Then:

11|S − 11 · p ⇐⇒ S − 11 · p = 11 · q for some q ∈ Z ⇐⇒ S = 11 · q + 11 · p = 11(q + p) ⇐⇒ 11|S

(⇐) Suppose that 11|S. Then

11|S ⇐⇒ S = 11·p ⇐⇒ 11·p = d0−d1+···+(−1)kdk ≡ dk·10k+dk−1·10k−1+···+d2·102+d1·101+d0·100 mod 11 = n

Hence, 11 · p ≡ n mod 11 ⇐⇒ 11|11 · p− n ⇐⇒ 11 · p− n = 11 · q ⇐⇒ n = 11 · p− 11 · q = 11(p− q) ⇐⇒ 11|n
Q.E.D.
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(1.85) Prove that there are no integers x, y and z such that x2 + y2 + z2 = 999.

Proof. If a is a perfect square, then, a2 ≡ 0, 1, or 4 mod 8. Since 999 = 8 · 124 + 7 ⇒ 999 ≡ 7 mod 8. By
proposition 1.60 (i), we have that:

x2 ≡ 0, 1, or 4 mod 8

y2 ≡ 0, 1, or 4 mod 8

z2 ≡ 0, 1, or 4 mod 8

Then the sum is going to be preserve moulo 8. This means that:

x2 + y2 + z2 ≡ 0 mod 8 ⇐⇒ (0 + 0 + 0), (4 + 4 + 0), (4 + 0 + 4), (0 + 4 + 4)
≡ 1 mod 8 ⇐⇒ (1 + 0 + 0), (0 + 1 + 0), (0 + 0 + 1)
≡ 2 mod 8 ⇐⇒ (1 + 1 + 0), (0 + 1 + 1), (1 + 0 + 1)
≡ 3 mod 8 ⇐⇒ (1 + 1 + 1)
≡ 4 mod 8 ⇐⇒ (4 + 0 + 0), (0 + 4 + 0), (0 + 0 + 4), (4 + 4 + 4)
≡ 5 mod 8 ⇐⇒ (1 + 4 + 0), (0 + 1 + 4), (1 + 0 + 4), (4 + 1 + 0), (0 + 4 + 1), (4 + 1 + 0)
≡ 6 mod 8 ⇐⇒ (4 + 1 + 1), (1 + 4 + 1), (1 + 1 + 4)
≡ 9 mod 8 ⇐⇒ (4 + 4 + 1), (4 + 1 + 4), (1 + 4 + 4)

All 33 = 27 possibilities are represented above but none of these are ≡ 7 mod 8. Hence, there exists no integers x, y, z
such that x2 + y2 + z2 = 999.

(1.86) Prove that there is no perfect square whose two last digits are 35.

A first proof: if a ≡ 5 mod 10 then a2 ≡ 5 mod 10.In particular, this means that the only way a square a2 ends in
5 is that a also ends in 5. Let a = 10 · k+ 5. Square it: a2 = 100 · k2 + 100 · k+ 25 = 100(k2 + k) + 25 ⇐⇒ a2 ≡ 25
mod 100. Hence, the last two digits of a2 are 25 and never 35.
A second proof: the following are all the equivalence classes mod 100 for i2, where i = 0, 1, ..., 100 [1, 4, 9, 16, 25,
36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24,61, 0, 41, 84, 29, 76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44,
21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 0, 21, 44, 69, 96, 25, 56, 89, 24, 61, 0, 41, 84, 29,
76, 25, 76, 29, 84, 41, 0, 61, 24, 89, 56, 25, 96, 69, 44, 21, 0, 81, 64, 49, 36, 25, 16, 9, 4, 1, 0]
None of these is 35, hence there is no square whose two last digits are 35.

(1.87) If x is an odd number not divisible by 3, prove that x2 ≡ 1 mod 24.

Proof: let x ∈ Z be an odd number not divisible by 3. Then, there exists a unique r ∈ {0, 1, ..., 23} such that
x ≡ r mod 24, i.e., x−r = 24 ·k ⇐⇒ x = 24 ·k+r for some k ∈ Z. Note that since 24 is divisible by 2, 2|x ⇐⇒ 2|r,
and since 24 is divisible by 3, 3|x ⇐⇒ 3|r. Also, if x ≡ r mod 24 then x2 ≡ r2 mod 24, so by all this, it suffices to
look at odd r not divisible by 3 in {0, 1, ..., 23}, and look at r2 mod 24 for such r. The following table summarizes
the data:

x = 1 5 7 11 13 17 19 23
x2 = 1 25 49 121 169 289 361 529

x2 ≡ mod 24 1 1 1 1 1 1 1 1

(1.94) (i) Let S(n) : (a+ b)n ≡ an + bn mod 2 for all a, b and for all n ≥ 1.
Proof that S(n) is true for all n ≥ 1, by 2nd form of induction.
Base Cases: n = 1⇒ (a+ b)1 = a+ b⇒ S(1) is true. Also, n = 2⇒ (a+ b)2 = a2 + 2ab+ b2 ≡ a2 + b2 mod
2, since 2|2ab. Finally, n = 3 ⇒ (a + b)3 = a3 + b3 + 3ab2 + 3a2b = a3 + b3 + 3ab(b + a) ≡ a3 + b3 mod 2, by
analyzing parity of the term 3ab(b+ a), we find that is its always the case that 3ab(b+ a) ≡ 0 mod 2 (See (*))
Inductive Step: Assume S(k) is true for k < n. Then:

(a+ b)n = (a+ b)(a+ b)n−1 Exponent rule
≡ (a+ b)(an−1 + bn−1) mod 2 Inductive Hypothesis
= an + abn−1 + an−1b+ bn Distributing
= (an + bn) + ab(an−2 + bn−2) Grouping
= (an + bn) + ab(a+ b)n−2 IH
≡ an + bn mod 2 By analyzing each case as follow (*):

(*) If a is even and b is odd (or vice versa), then a · b ≡ 0 mod 2. If both a and b are even OR both a and b are
odd, then ab(a+ b)n−2 = ab(a+ b)(a+ b)n−3 ≡ 0 mod 2 since a+ b is even. Q.E.D

(ii) Let a = 1 and b = 1. Then (1 + 1)2 = 22 = 4 ≡ 1 mod 3. But 12 + 12 = 1 + 1 = 2 ≡ 2 mod 3. Hence,
(a+ b)2 6≡ a2 + b2 mod 3
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