M403 Homework 6

Enrique Areyan October 10, 2012

1. In what follows (a),(b) and (c), to compute $g c d$ use this fact: $\operatorname{gcd}(b, a)=\operatorname{gcd}(b-a, a)$.
(a) $\operatorname{gcd}(1599,481)=\operatorname{gcd}(1118,481)=\operatorname{gcd}(637,481)=\operatorname{gcd}(481,156)=\operatorname{gcd}(325,156)=\operatorname{gcd}(169,156)=\operatorname{gcd}(156,13)=$ 13. In the last step I used the fact that the $g c d$ of a prime and a composite is the prime number. In this case 13 is prime and $156=2 \cdot 78$ so is a composite.
(b) $\operatorname{gcd}(3108,1147)=\operatorname{gcd}(1961,1147)=\operatorname{gcd}(1147,814)=\operatorname{gcd}(814,333)=\operatorname{gcd}(481,333)=\operatorname{gcd}(333,148)=\operatorname{gcd}(185,148)=$ $\operatorname{gcd}(148,37)=\operatorname{gcd}(111,37)=\operatorname{gcd}(74,37)=\operatorname{gcd}(37,37)=37$
(c) $\operatorname{gcd}(2460,123)=\operatorname{gcd}(2337,123)=\operatorname{gcd}(2214,123)=\operatorname{gcd}(2091,123)=\operatorname{gcd}(1968,123)=\operatorname{gcd}(1845,123)=$ $\operatorname{gcd}(1722,123)=\operatorname{gcd}(1599,123)=\operatorname{gcd}(1476,123)=\operatorname{gcd}(1353,123)=\operatorname{gcd}(1230,123)=\operatorname{gcd}(1107,123)=$ $\operatorname{gcd}(984,123)=\operatorname{gcd}(861,123)=\operatorname{gcd}(738,123)=\operatorname{gcd}(615,123)=\operatorname{gcd}(492,123)=\operatorname{gcd}(369,123)=\operatorname{gcd}(246,123)=$ $\operatorname{gcd}(123,123)=123$
2. (a) $\operatorname{gcd}\left(2^{1} \cdot 3^{2} \cdot 5^{3}, 2^{2} \cdot 3^{2} \cdot 5^{2}\right)=2^{1} \cdot 3^{2} \cdot 5^{2}$ and $\operatorname{lcm}\left(2^{1} \cdot 3^{2} \cdot 5^{3}, 2^{2} \cdot 3^{2} \cdot 5^{2}\right)=2^{2} \cdot 3^{2} \cdot 5^{3}$
(b) $\operatorname{gcd}\left(2^{8} \cdot 5^{9} \cdot 7^{7}, 2^{3} \cdot 5^{7} \cdot 7^{2}\right)=2^{3} \cdot 5^{7} \cdot 7^{2}$ and $\operatorname{lcm}\left(2^{8} \cdot 5^{9} \cdot 7^{7}, 2^{3} \cdot 5^{7} \cdot 7^{2}\right)=2^{8} \cdot 5^{9} \cdot 7^{7}$
(1.68) (i) False. Since both $2^{19} \in \mathbb{Z}$ and $3^{12} \in \mathbb{Z}$, i.e., are integers, then the difference is also going to be an integer. Let $d=\left|2^{19}-3^{12}\right|$. Then $d \in \mathbb{Z}^{+}$. Therefore, the original question: $d<\frac{1}{2}$, reduces to $d \leq 0$, since it cannot be a rational number. Right away we can see that $d \geq 0$ since d is a positive value (absolute value). So, we only need to check whether $d=0$ or not. Suppose $d=0$, then $2^{19}=3^{12}$, but this is impossible since by the Fundamental Theorem of Arithmetic every number has a unique prime factorization and obviously 2 and 3 are prime, so the above factorization yields different numbers. Therefore, $d>0$, which implies that $d>\frac{1}{2}$.
(ii) True. Suppose that $r=p_{1}^{g_{1}} \cdots p_{n}^{g_{n}}$, where p_{i} are distinct primes and g_{i} are integers. Proof: (\Rightarrow). Suppose r is an integer. Then by the Fundamental Theorem of Arithmetic there exists a unique factorization of r into primes. By Corollary 1.52 , let $r=q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{m}^{e_{m}}$, where $e_{1}>0$ be such a factorization. Then, up to indexing, $q_{1}^{e_{1}} q_{2}^{e_{2}} \cdots q_{m}^{e_{m}}=p_{1}^{g_{1}} \cdots p_{n}^{g_{n}} \Rightarrow e_{i}=g_{i}>0$.
(\Leftarrow) Suppose $g_{i} \in \mathbb{Z}^{+}$for all i. Then it is trivially true that r is an integer. Q.E.D.
(iii) True. Since $\operatorname{lcm}\left(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2}, 3^{3} \cdot 5 \cdot 13\right)=\operatorname{lcm}\left(2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{0}, 2^{0} \cdot 3^{3} \cdot 5 \cdot 7^{0} \cdot 13\right)=2^{3} \cdot 3^{3} \cdot 5 \cdot 7^{2} \cdot 13=$ $=\frac{2^{3} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 13}{3^{2} \cdot 5}=\frac{2^{3} \cdot 3^{5} \cdot 5^{2} \cdot 7^{2} \cdot 13}{45}$
(iv) True. Let $a, b \in \mathbb{Z}^{+}$. Suppose that $d=\operatorname{gcd}(a, b) \geq 2$. By the Fundamental Theorem of Arithmetic, we can write $d=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$, where p_{i} is a distinct prime for all i and $e_{i}>0$ for all i, and $n \geq 1$. By definition of $g c d$, we have that $d \mid a$ and $d \mid b$, i.e.,

$$
\begin{gathered}
p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \mid a \text { and } p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \mid b \Longleftrightarrow \\
a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \cdot a^{\prime} \text { and } b=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}} \cdot b^{\prime}, \text { for some } a^{\prime}, b^{\prime} \in \mathbb{Z}
\end{gathered}
$$

From which we can assert that at least some p_{i} divides both a and b, since

$$
\begin{aligned}
p_{i}^{e_{i}} \mid a & \Longleftrightarrow a=p_{i}^{e_{i}} a^{\prime \prime}, \quad \text { where } a^{\prime \prime}=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{i-1}^{e_{i-1}} \cdot p_{i+1}^{e_{i+1}} \cdots p_{n}^{e_{n}} \cdot a^{\prime} \\
p_{i}^{e_{i}} \mid b & \Longleftrightarrow b=p_{i}^{e_{i}} b^{\prime \prime}, \quad \text { where } b^{\prime \prime}=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{i-1}^{e_{i-1}} \cdot p_{i+1}^{e_{i+1}} \cdots p_{n}^{e_{n}} \cdot b^{\prime}
\end{aligned}
$$

(v) True. Suppose that a and b are relatively prime, i.e., $\operatorname{gcd}(a, b)=1$. If that is the case, then a and b share no common factor. By the Fundamental Theorem of Arithmetic, we can write $a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ and $b=$ $q_{1}^{f_{1}} \cdot q_{2}^{f_{2}} \cdots q_{n}^{f_{n}}$; for p_{i} and q_{i} prime for all i and all j and $e_{i}>0, f_{i}>0$ for all i. Since a and b are relatively prime, then $p_{i} \neq q_{i}$ for all i. Take the squares: $a^{2}=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)^{2}=p_{1}^{2 e_{1}} \cdot p_{2}^{2 e_{2}} \cdots p_{n}^{2 e_{n}}$. Likewise, $b^{2}=\left(q_{1}^{f_{1}} \cdot q_{2}^{f_{2}} \cdots q_{n}^{f_{n}}\right)^{2}=q_{1}^{2 f_{1}} \cdot q_{2}^{2 f_{2}} \cdots q_{n}^{2 f_{n}}$, which shows that a^{2} and b^{2} have no common factor. Hence, $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$
(i) $\operatorname{gcd}(210,48)=\operatorname{gcd}\left(2 \cdot 3 \cdot 5 \cdot 7,2^{4} \cdot 3 \cdot 5^{0} \cdot 7^{0}\right)=2 \cdot 3 \cdot 5^{0} \cdot 7^{0}=6$
(ii) Using the fact given in class that $\operatorname{gcd}(b, a)=\operatorname{gcd}(b-q \cdot a, a)$ for some $q \in \mathbb{Z}$. We can compute: $\operatorname{gcd}(5678,1234)=\operatorname{gcd}(5678-4 \cdot 1234)=\operatorname{gcd}(1234,742)=\operatorname{gcd}(742,492)=\operatorname{gcd}(492,250)=\operatorname{gcd}(242,8)=$ $\operatorname{gcd}(242-30 \cdot 8,8)=\operatorname{gcd}(2,8)=\operatorname{gcd}(8-4 \cdot 2,2)=\operatorname{gcd}(0,2)=2$
(i) Let $m \geq 2$ be an integer.
(\Rightarrow) Suppose that m is a perfect square. Then $m=a^{2}$ for some $a \in \mathbb{Z}$ such that $a \geq 2$. By the Fundamental Theorem of Arithmetic, we can write $a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ where p_{i} is a distinct prime for all i and $e_{i}>0$ for all i, and $n \geq 1$. It follows that:
$m=a^{2}=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)^{2}=p_{1}^{2 e_{1}} \cdot p_{2}^{2 e_{2}} \cdots p_{n}^{2 e_{n}} \Rightarrow \quad$ each of its prime factors occurs an even number of times (\Leftarrow) Suppose that each of m 's prime factors occurs an even number of times. Then we can write

$$
m=p_{1}^{2 e_{1}} \cdot p_{2}^{2 e_{2}} \cdots p_{n}^{2 e_{n}}=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)^{2}=b^{2} \quad \text {, for some } b \in \mathbb{Z} \Rightarrow m \text { is a perfect square. Q.E.D. }
$$

(ii) Suppose that n is such that \sqrt{n} is a rational number. Then we can write $\sqrt{n}=r \Longleftrightarrow n=r^{2}$ where r is a rational number. Then, by Corollary 1.53 , we can factor $r=p_{1}^{g_{1}} \cdot p_{2}^{g_{2}} \cdots p_{n}^{g_{n}}$ where p_{i} are distinct primes and g_{i} are nonzero integers. Replacing into the above equation: $n=\left(p_{1}^{g_{1}} \cdot p_{2}^{g_{2}} \cdots p_{n}^{g_{n}}\right)^{2}=p_{1}^{2 g_{1}} \cdot p_{2}^{2 g_{2}} \cdots p_{n}^{2 g_{n}}$, which by above (1.70 (i)), implies that n is a perfect square.
This proves that if \sqrt{n} is a rational number then n is a perfect square. It follows by contraposition that if n is not a perfect square, then \sqrt{n} is not a rational number, i.e., irrational. Q.E.D.
(1.71) Proof. Let a and b be positive integers with $\operatorname{gcd}(a, b)=1$ and $a \cdot b$ a square. By the Fundamental Theorem of Arithmetic, we can write $a=p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}$ and $b=p_{1}^{f_{1}} \cdot p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}$, where p_{i} are distinct primes and $e_{i} \geq 0$ and $f_{i} \geq 0$. Since $a \cdot b$ is a square this means that:

$$
c^{2}=a \cdot b=\left(p_{1}^{e_{1}} \cdot p_{2}^{e_{2}} \cdots p_{n}^{e_{n}}\right)\left(p_{1}^{f_{1}} \cdot p_{2}^{f_{2}} \cdots p_{n}^{f_{n}}\right)=p_{1}^{e_{1}+f_{1}} \cdot p_{2}^{e_{2}+f_{2}} \cdots p_{n}^{e_{n}+f_{n}}
$$

Since $\operatorname{gcd}(a, b)=1$ then a and b don't have any common prime divisors. In particular this means that either $e_{i}=0$ or $f_{i}=0$ for all i, but not both can be greater than zero at the same time. Let $h_{i}=e_{i}$ if $f_{i}=0$ or $h_{i}=f_{i}$ if $e_{i}=0$. Then,

$$
c^{2}=a \cdot b=p_{1}^{h_{1}} \cdot p_{2}^{h_{2}} \cdots p_{n}^{h_{2}}
$$

By previous exercise, c^{2} (a perfect square) implies that all of its prime factors occur and even number of times. Therefore, $h_{i}=2 \cdot k_{i}$ for all i. If we collect the primes coming from a and primes coming from b, we can conclude that each of these occur an even number of times and thus, both a and b are perfect square. Q.E.D
(1.72) Proof by Contradiction. Let $n=p^{r} m$, where p is prime and p does not divide m. Suppose that $\left.p \left\lvert\, \begin{array}{l}n \\ p^{r}\end{array}\right.\right)$. Since $a \cdot b$ is a square, then by the previous exercise

$\binom{n}{p^{r}}_{n!}$	$=p \cdot q$	
$\left(n-p^{r}\right)!p^{r}!$		for some $q \in \mathbb{Z}$
$n!$		$p \cdot q$

Let $q^{\prime}=q \cdot\left(n-p^{r}\right)!\left(p^{r}-1\right)!$. Then $(m)\left(p^{r} m-1\right)!=p \cdot q^{\prime} \Longleftrightarrow p \mid(m)\left(p^{r} m-1\right)!$. Since p is prime, by Euclid's Lemma, either $p \mid m$ or $p \mid\left(p^{r} m-1\right)$. But, we assume that p does not divide m, therefore it must be the case that $p\left|\left(p^{r} m-1\right) \Longleftrightarrow p\right|\left(p^{r} m-1\right) \cdot\left(p^{r} m-2\right) \cdots\left(p^{r} m-p^{r} m+1\right)$ by definition of factorial.
Applying Euclid's Lemma again, we conclude that there exists a factor of the form $p^{r} m-i$, where $1 \leq i \leq p^{r} m-1$ such that $p \mid p^{r} m-i \Longleftrightarrow p^{r} m-i=p \cdot p^{\prime}$ for some $p^{\prime} \in \mathbb{Z}$, which is the same as $p^{r} m=p \cdot p^{\prime}+i \Rightarrow p \nmid p^{r} m$. But, $p \mid p^{r} m$ since by Euclid's Lemma either $p \mid m$ or $p \mid p^{r}$. By hypothesis, $p \nmid m$ so $p \mid p^{r} \Longleftrightarrow p^{r}=p \cdot t$, which is true, for instance just let $t=p^{r-1}$. Therefore, we have a contradiction since we concluded that $p \mid p^{r} m$ and $p \nmid p^{r} m$. It follows that our main assumption was wrong and the case is that $p \nmid\binom{n}{p^{r}}$.
(1.75) Let $M \geq 0$.
(\Rightarrow) Suppose M is the least common multiple. Suppose to the contrary that there exists a common multiple of $a_{1}, a_{2}, \ldots, a_{n}$, call it d, such that $M \nmid d$. Then by the Division algorithm we have that $d=M \cdot q+r$ where $0<r<M$, it follows that $r=d-M \cdot q$. By property of d, we have that $a_{i} \mid d$ for all i. This means that $d=a_{i} a_{i}^{\prime}$. Also, $a_{i} \mid M$, meaning that $M=a_{i} b_{i}$. Replacing this into our equation for r we have that $r=d-M \cdot q=a_{i} a_{i}^{\prime}-a_{i} b_{i} q=a_{i}\left(a_{i}^{\prime}-b_{i} q\right) \Rightarrow a_{i} \mid r$ for all i. Hence, r is also a common multiple. However, from the division algorithm we have that $r<M$ but we assumed M to be the least common divisor. This is a contradiction that shows that for any other common divisor d the lcm M is such that $M \mid d$.
(\Leftarrow) Suppose M is a common multiple of $a_{1}, a_{2}, \ldots, a_{n}$ which divides every other common multiple d. Then $M \mid d \Longleftrightarrow d=M \cdot m^{\prime}$. Take absolute values: $d=|d|=|M| \cdot\left|m^{\prime}\right| \geq 1 \cdot|M| \geq M$, which shows that M is the smallest common multiple. Q.E.D.

