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(1.54)

(i) Proof by contradiction: suppose that n is square free and is also a rational number. Then, we can write it
in lowest terms:

√
n = a

b , where a.b ∈ Z, b 6= 0, gcd(a, b) = 1. Now,

√
n =

a

b
⇐⇒ n =

a2

b2
⇐⇒ nb2 = a2

By the last statement we know that n|a2 ⇐⇒ a2 = np1. Also, we can factor n as follow: n = p · q where p is a
prime. Replacing this factorization into the last equation we get that a2 = (pq)p1 = p(qp1)⇒ p|a2. By Euclid’s
lemma p|a ⇐⇒ a = pm. Replacing into the first equation:

nb2 = (pm)2 = p2m2 ⇐⇒ pqb2 = p2m2 ⇐⇒ qb2 = pm2

Since n is square free and p is prime, n is not divisible by p2. Hence:

b2 = p
m2

q
⇐⇒ p|b2

By Euclid’s lemma, p|b. From before we have that p|a, which contradicts the fact that a
b is in lowest terms.

Therefore,
√
n, where n is square free, is not a rational number.

(ii) Proof by contradiction: suppose that 3
√
2 were rational. Then we can write it in lowest terms, i.e., 3

√
2 = a

b
where a.b ∈ Z, b 6= 0, gcd(a, b) = 1. Then

3
√
2 =

a

b
⇐⇒ 2 =

a3

b3
⇐⇒ 2b3 = a3

Since 2 is a prime and 2|2b3 ⇐⇒ 2|a3, we can apply Euclid’s lemma to conclude that 2|a ⇐⇒ a = 2p for
some p ∈ Z. Replacing this into our previous equation:

2b3 = 23p3 ⇐⇒ b3 = 4p3 ⇐⇒ 4|b3 ⇒ 2|b3

Applying Euclid’s lemma again 2|b, which together with 2|a contradicts the fact that gcd(a, b) = 1. Hence, it
must be the case that 3

√
2 is irrational.

(1.58) Suppose that given integers r, r′ and m, we have that gcd(r,m) = gcd(r′,m) = 1. This means that for some integers
s, s′, t, t′ we have that sr + tm = 1 and s′r′ + t′m = 1. Consider the following product:

1 = (sr + tm)(s′r′ + t′m) = ss′rr′ + srt′m+ s′r′tm+ tt′m2 = ss′rr′ +m(srt′ + s′r′t+ tt′m)

Let q = ss′ ∈ Z and p = srt′ + s′r′t+ tt′m ∈ Z, then 1 = qrr′ + pm ⇐⇒ gcd(rr′,m) = 1. Q.E.D

(1.59) I claim that if d = sa+ tb then d = a(s+ nb) + b(t− na) for n ∈ N.
Proof: By simple arithmetic: a(s+nb)+b(t−na) = as+nab+bt−nab = sa+ tb = d. In particular, this means that
there exists infinitely many pairs of integers (sn, tn) for which d = sna+ tnb. Simply take (sn, tn) = (s+ nb, t− na)
for n ∈ N.

(1.60) Suppose that gcd(a, b) = 1 and a|n and b|n. Then, n = a · p = b · q, for some integers p, q. Hence, a|b · q. Applying
Corollary 1.40, we can conclude that a|q, i.e. q = a · q′. Replacing this into the above equation for n, we obtain
n = b · a · q′ = (a · b) · q′, which means that ab|n.

(1.61) This is a two part proof: (in what follows, a, a′, b, b′, c, q ∈ Z)

(i) Suppose c|a and c|b. Then a = ca′ and b = cb′. Consider b− a = cb′ − ca′ = c(b′ − a′) ⇐⇒ c|b− a. Hence, the
same divisor of a and b divides b− a. This means that gcd(a, b) ≤ gcd(b− a, a).

(ii) Suppose c|b − a and c|a. Then b − a = cq and a = ca′. Consider b = cq − a = cq − ca′ = c(q − a′) ⇐⇒ c|b.
Hence, the same divisor of b− a and a divides b. This means that gcd(b− a, a) ≤ gcd(a.b).
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Together, (i) and (ii) imply that gcd(a, b) = gcd(b− a, a)

(1.62) I am going to do this proof same as before (1.60). (In what follows, a, b, c, e, k, p1, p2, p3, p4, p5 ∈ Z) Also, let
e = gcd(b, c). By definition, e|b ⇐⇒ b = ep3 and e|c ⇐⇒ c = ep4.

(i) Suppose k|ab and k|ac. Then, ab = kp1 and ac = kp2. Consider ab = aep3 = kp1 and ac = aep4 = kp2
⇒ ae = kp2p3 ⇐⇒ k|ae.

(ii) Suppose that k|ae. Then, ae = kp5. Consider, ab = kp5

e ep3 = kp5p3 ⇐⇒ k|ab. Likewise, ac = kp5

e ep4 =
kp5p4 ⇐⇒ k|ac

Together, (i) and (ii) imply that a · gcd(b, c) = gcd(ab, ac)

(1.64) Proof by Induction. Let S(n) : Fn+1 and Fn are relatively prime, i.e., gcd(Fn+1, Fn) = 1.

Base Case S(1) : F2 = 1;F1 = 0⇒ gcd(F2, F1) = gcd(1, 0) = 1. Base case holds true.

Inductive Step. Assume S(n) true. We want to show that S(n + 1) is true, i.e. gcd(F(n+1)+1, Fn+1)
?
= 1.

We begin as follow:

gcd(Fn+2, Fn+1) = gcd(Fn+2 − Fn+1, Fn+1) By exercise (1.61)
= gcd(Fn, Fn+1) By definition of Fibonacci sequence.
= 1 by IH. Q.E.D.

(1.66)

(i) Let d = gcd(a, b, c) and let e = gcd(b, c) and f = gcd(a, gcd(b, c)). By definition d|a, d|b, and d|c. Also, by
definition e|b, e|c, f |a, and f |e. From f |e and e|b we conclude that f |b. Likewise, from f |e and e|c we conclude
that f |c. Therefore, of f we have that f |a, f |b, and f |c. But from definition if f is a common divisor of a, b, c,
which we just showed, then f |d.

Also, from d|b and d|c we can conclude that, d|gcd(b, c) ⇐⇒ d|e, i.e., a common divisor divides the gcd.
Applying this same reasoning but with premises d|a and d|e we obtain that d|gcd(a, e) ⇐⇒ d|f .

Therefore, we have that f |d and d|f , and we can conclude that f = ±d. However, these are defined as
the greatest common divisor, so we can conclude that f = d.

(ii) (120, 168, 328) = (120, (328, 168)) = (120, (168, 160)) = (120, (160, 8)) = (120, 8) = 8

(1.67)

(i) Let z = q + ip be a complex number such that q > p and q, p ∈ Z+. Then, on the one hand:

|z2| = |z · z|
= |(q + ip)(q + ip)|
= |q2 + 2ipq − p2|
= |(q2 − p2) + 2ipq|
=

√
(q2 − p2)2 + (2pq)2

On the other:
|z|2 = |q + ip|2

=
√
q2 + p2

2

= q2 + p2

So, if |z2| = |z|2 ⇐⇒
√
(q2 − p2)2 + (2pq)2 = q2 + p2 ⇐⇒ (q2 − p2)2 + (2pq)2 = (q2 + p2)2, which shows that

(q2 − p2, 2pq, q2 + p2) is a Pythagorean triple by letting a = q2 − p2, b = 2pq and c = q2 + p2

(ii) Suppose that (9, 12, 15) is a Pythagorean triple of the type given in (i). Then, there exists p, q ∈ Z+ with q > p
such that:

(q2 − p2, 2pq, q2 + p2) = (9, 12, 15)

Meaning that: q2− p2 = 9 and 2pq = 12 and q2 + p2 = 15. From the second equation we get that pq = 6, whose
only positive integer solutions are q = 3, p = 2 OR q = 6, p = 1. Neither one of these solutions satisfy the other
equations and hence, (9, 12, 15) is not of type given in (i).
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