## M403 Homework 5

## Enrique Areyan <br> October 3, 2012

(i) Proof by contradiction: suppose that $n$ is square free and is also a rational number. Then, we can write it in lowest terms: $\sqrt{n}=\frac{a}{b}$, where $a . b \in \mathbb{Z}, b \neq 0, \operatorname{gcd}(a, b)=1$. Now,

$$
\sqrt{n}=\frac{a}{b} \Longleftrightarrow n=\frac{a^{2}}{b^{2}} \Longleftrightarrow n b^{2}=a^{2}
$$

By the last statement we know that $n \mid a^{2} \Longleftrightarrow a^{2}=n p_{1}$. Also, we can factor $n$ as follow: $n=p \cdot q$ where $p$ is a prime. Replacing this factorization into the last equation we get that $a^{2}=(p q) p_{1}=p\left(q p_{1}\right) \Rightarrow p \mid a^{2}$. By Euclid's lemma $p \mid a \Longleftrightarrow a=p m$. Replacing into the first equation:

$$
n b^{2}=(p m)^{2}=p^{2} m^{2} \Longleftrightarrow p q b^{2}=p^{2} m^{2} \Longleftrightarrow q b^{2}=p m^{2}
$$

Since $n$ is square free and $p$ is prime, $n$ is not divisible by $p^{2}$. Hence:

$$
\left.b^{2}=p \frac{m^{2}}{q} \Longleftrightarrow p \right\rvert\, b^{2}
$$

By Euclid's lemma, $p \mid b$. From before we have that $p \mid a$, which contradicts the fact that $\frac{a}{b}$ is in lowest terms. Therefore, $\sqrt{n}$, where $n$ is square free, is not a rational number.
(ii) Proof by contradiction: suppose that $\sqrt[3]{2}$ were rational. Then we can write it in lowest terms, i.e., $\sqrt[3]{2}=\frac{a}{b}$ where $a . b \in \mathbb{Z}, b \neq 0, \operatorname{gcd}(a, b)=1$. Then

$$
\sqrt[3]{2}=\frac{a}{b} \Longleftrightarrow 2=\frac{a^{3}}{b^{3}} \Longleftrightarrow 2 b^{3}=a^{3}
$$

Since 2 is a prime and $2\left|2 b^{3} \Longleftrightarrow 2\right| a^{3}$, we can apply Euclid's lemma to conclude that $2 \mid a \Longleftrightarrow a=2 p$ for some $p \in \mathbb{Z}$. Replacing this into our previous equation:

$$
2 b^{3}=2^{3} p^{3} \Longleftrightarrow b^{3}=4 p^{3} \Longleftrightarrow 4\left|b^{3} \Rightarrow 2\right| b^{3}
$$

Applying Euclid's lemma again $2 \mid b$, which together with $2 \mid a$ contradicts the fact that $\operatorname{gcd}(a, b)=1$. Hence, it must be the case that $\sqrt[3]{2}$ is irrational.
(1.58) Suppose that given integers $r, r^{\prime}$ and $m$, we have that $g c d(r, m)=g c d\left(r^{\prime}, m\right)=1$. This means that for some integers $s, s^{\prime}, t, t^{\prime}$ we have that $s r+t m=1$ and $s^{\prime} r^{\prime}+t^{\prime} m=1$. Consider the following product:

$$
1=(s r+t m)\left(s^{\prime} r^{\prime}+t^{\prime} m\right)=s s^{\prime} r r^{\prime}+s r t^{\prime} m+s^{\prime} r^{\prime} t m+t t^{\prime} m^{2}=s s^{\prime} r r^{\prime}+m\left(s r t^{\prime}+s^{\prime} r^{\prime} t+t t^{\prime} m\right)
$$

Let $q=s s^{\prime} \in \mathbb{Z}$ and $p=s r t^{\prime}+s^{\prime} r^{\prime} t+t t^{\prime} m \in \mathbb{Z}$, then $1=q r r^{\prime}+p m \Longleftrightarrow g c d\left(r r^{\prime}, m\right)=1$. Q.E.D
(1.59) I claim that if $d=s a+t b$ then $d=a(s+n b)+b(t-n a)$ for $n \in \mathbb{N}$.

Proof: By simple arithmetic: $a(s+n b)+b(t-n a)=a s+n a b+b t-n a b=s a+t b=d$. In particular, this means that there exists infinitely many pairs of integers $\left(s_{n}, t_{n}\right)$ for which $d=s_{n} a+t_{n} b$. Simply take $\left(s_{n}, t_{n}\right)=(s+n b, t-n a)$ for $n \in \mathbb{N}$.
(1.60) Suppose that $\operatorname{gcd}(a, b)=1$ and $a \mid n$ and $b \mid n$. Then, $n=a \cdot p=b \cdot q$, for some integers $p, q$. Hence, $a \mid b \cdot q$. Applying Corollary 1.40, we can conclude that $a \mid q$, i.e. $q=a \cdot q^{\prime}$. Replacing this into the above equation for $n$, we obtain $n=b \cdot a \cdot q^{\prime}=(a \cdot b) \cdot q^{\prime}$, which means that $a b \mid n$.
(1.61) This is a two part proof: (in what follows, $a, a^{\prime}, b, b^{\prime}, c, q \in \mathbb{Z}$ )
(i) Suppose $c \mid a$ and $c \mid b$. Then $a=c a^{\prime}$ and $b=c b^{\prime}$. Consider $b-a=c b^{\prime}-c a^{\prime}=c\left(b^{\prime}-a^{\prime}\right) \Longleftrightarrow c \mid b-a$. Hence, the same divisor of $a$ and $b$ divides $b-a$. This means that $\operatorname{gcd}(a, b) \leq \operatorname{gcd}(b-a, a)$.
(ii) Suppose $c \mid b-a$ and $c \mid a$. Then $b-a=c q$ and $a=c a^{\prime}$. Consider $b=c q-a=c q-c a^{\prime}=c\left(q-a^{\prime}\right) \Longleftrightarrow c \mid b$. Hence, the same divisor of $b-a$ and $a$ divides $b$. This means that $\operatorname{gcd}(b-a, a) \leq g c d(a . b)$.

Together, (i) and (ii) imply that $\operatorname{gcd}(a, b)=g c d(b-a, a)$
(1.62) I am going to do this proof same as before (1.60). (In what follows, $a, b, c, e, k, p_{1}, p_{2}, p_{3}, p_{4}, p_{5} \in \mathbb{Z}$ ) Also, let $e=\operatorname{gcd}(b, c)$. By definition, $e \mid b \Longleftrightarrow b=e p_{3}$ and $e \mid c \Longleftrightarrow c=e p_{4}$.
(i) Suppose $k \mid a b$ and $k \mid a c$. Then, $a b=k p_{1}$ and $a c=k p_{2}$. Consider $a b=a e p_{3}=k p_{1}$ and $a c=a e p_{4}=k p_{2}$ $\Rightarrow a e=k p_{2} p_{3} \Longleftrightarrow k \mid a e$.
(ii) Suppose that $k \mid a e$. Then, $a e=k p_{5}$. Consider, $\left.a b=\frac{k p_{5}}{e} e p_{3}=k p_{5} p_{3} \Longleftrightarrow k \right\rvert\, a b$. Likewise, $a c=\frac{k p_{5}}{e} e p_{4}=$ $k p_{5} p_{4} \Longleftrightarrow k \mid a c$

Together, (i) and (ii) imply that $a \cdot \operatorname{gcd}(b, c)=\operatorname{gcd}(a b, a c)$
(1.64) Proof by Induction. Let $S(n): F_{n+1}$ and $F_{n}$ are relatively prime, i.e., $\operatorname{gcd}\left(F_{n+1}, F_{n}\right)=1$.

Base Case $S(1): F_{2}=1 ; F_{1}=0 \Rightarrow \operatorname{gcd}\left(F_{2}, F_{1}\right)=\operatorname{gcd}(1,0)=1$. Base case holds true.
Inductive Step. Assume $S(n)$ true. We want to show that $S(n+1)$ is true, i.e. $\operatorname{gcd}\left(F_{(n+1)+1}, F_{n+1}\right) \stackrel{?}{=} 1$. We begin as follow:

$$
\begin{align*}
\operatorname{gcd}\left(F_{n+2}, F_{n+1}\right) & =\operatorname{gcd}\left(F_{n+2}-F_{n+1}, F_{n+1}\right) & & \text { By exercise }(1.61) \\
& =\operatorname{gcd}\left(F_{n}, F_{n+1}\right) & & \text { By definition of Fibonacci sequence. } \\
& =1 & & \text { by IH. Q.E.D. } \tag{1.66}
\end{align*}
$$

(i) Let $d=\operatorname{gcd}(a, b, c)$ and let $e=\operatorname{gcd}(b, c)$ and $f=\operatorname{gcd}(a, \operatorname{gcd}(b, c))$. By definition $d|a, d| b$, and $d \mid c$. Also, by definition $e|b, e| c, f \mid a$, and $f \mid e$. From $f \mid e$ and $e \mid b$ we conclude that $f \mid b$. Likewise, from $f \mid e$ and $e \mid c$ we conclude that $f \mid c$. Therefore, of $f$ we have that $f|a, f| b$, and $f \mid c$. But from definition if $f$ is a common divisor of $a, b, c$, which we just showed, then $f \mid d$.

Also, from $d \mid b$ and $d \mid c$ we can conclude that, $d|g c d(b, c) \Longleftrightarrow d| e$, i.e., a common divisor divides the gcd. Applying this same reasoning but with premises $d \mid a$ and $d \mid e$ we obtain that $d|g c d(a, e) \Longleftrightarrow d| f$.

Therefore, we have that $f \mid d$ and $d \mid f$, and we can conclude that $f= \pm d$. However, these are defined as the greatest common divisor, so we can conclude that $f=d$.
(ii) $(120,168,328)=(120,(328,168))=(120,(168,160))=(120,(160,8))=(120,8)=8$
(i) Let $z=q+i p$ be a complex number such that $q>p$ and $q, p \in \mathbb{Z}^{+}$. Then, on the one hand:

$$
\begin{aligned}
\left|z^{2}\right| & =|z \cdot z| \\
& =|(q+i p)(q+i p)| \\
& =\left|q^{2}+2 i p q-p^{2}\right| \\
& =\left|\left(q^{2}-p^{2}\right)+2 i p q\right| \\
& =\sqrt{\left(q^{2}-p^{2}\right)^{2}+(2 p q)^{2}}
\end{aligned}
$$

On the other:

$$
\begin{aligned}
|z|^{2} & =|q+i p|^{2} \\
& ={\sqrt{q^{2}+p^{2}}}^{2} \\
& =q^{2}+p^{2}
\end{aligned}
$$

So, if $\left|z^{2}\right|=|z|^{2} \Longleftrightarrow \sqrt{\left(q^{2}-p^{2}\right)^{2}+(2 p q)^{2}}=q^{2}+p^{2} \Longleftrightarrow\left(q^{2}-p^{2}\right)^{2}+(2 p q)^{2}=\left(q^{2}+p^{2}\right)^{2}$, which shows that $\left(q^{2}-p^{2}, 2 p q, q^{2}+p^{2}\right)$ is a Pythagorean triple by letting $a=q^{2}-p^{2}, b=2 p q$ and $c=q^{2}+p^{2}$
(ii) Suppose that $(9,12,15)$ is a Pythagorean triple of the type given in (i). Then, there exists $p, q \in \mathbb{Z}^{+}$with $q>p$ such that:

$$
\left(q^{2}-p^{2}, 2 p q, q^{2}+p^{2}\right)=(9,12,15)
$$

Meaning that: $q^{2}-p^{2}=9$ and $2 p q=12$ and $q^{2}+p^{2}=15$. From the second equation we get that $p q=6$, whose only positive integer solutions are $q=3, p=2$ OR $q=6, p=1$. Neither one of these solutions satisfy the other equations and hence, $(9,12,15)$ is not of type given in (i).

