M403 Homework 4

Enrique Areyan

September 21, 2012

(i) False. Suppose for a contradiction that $6 \mid 2$. Then, $2=6 \cdot q$ for some $q \in \mathbb{Z}$. But, solving for q we get that $q=\frac{1}{3} \notin \mathbb{Z}$, a contradiction. Hence $2 \nmid 6$.
(ii) True. $6=2 \cdot 3$ and $3 \in \mathbb{Z}$. Hence, $2 \mid 6$.
(iii) True. $0=6 \cdot 0$ and $0 \in \mathbb{Z}$. Hence, $6 \mid 0$.
(iv) False. Suppose for a contradiction that $0 \mid 6$. Then $6=0 \cdot q$ for some $q \in \mathbb{Z}$. But, $6=0 \cdot q=0$, which is clearly a contradiction. Hence $0 \nmid 6$.
(v) True. $0=0 \cdot q$ for some $q \in \mathbb{Z}$, pick any q. Hence, $0 \mid 0$.
(vi) True. Suppose for a contradiction that there is a $c>1 \in \mathbb{Z}$ for which $g . c . d(n, n+1)=c$. (I do not have to worry about c being negative because I know that at least 1 divides both n and $n+1$ and hence 1 is a lower bound on the g.c.d.). This would mean that $c \mid n$ and $c \mid n+1$, i.e., $n=c \cdot q$ for some $q \in \mathbb{Z}$ and $n+1=c \cdot p$ for some $p \in \mathbb{Z}$. Using these equations we obtain:

$$
\begin{aligned}
n+1 & =c \cdot p \\
c \cdot q+1 & =c \cdot p \\
1 & =c \cdot p-c \cdot q \\
1 & =c(p-q)
\end{aligned} \Longrightarrow
$$

Now we have to consider three cases:
(i) $p-q=0$. This would mean that $1=c \cdot 0=0$. A contradiction.
(ii) $p-q<0$. This would mean that $1<0$. A contradiction.
(iii) $p-q>0$. This would mean that $1>1$. A contradiction.

Therefore, our assumption is wrong, and the case is that $g \cdot c \cdot d(n, n+1)=1$ for every natural number n.
(vii) False. Let $n=13$, then $n+2=15$ but $g . c . d(13,15)=1 \neq 2$.

$$
\begin{gather*}
f_{1}=p_{1}+1=2+1=3 \tag{1.49}\\
f_{2}=p_{1} \cdot p_{2}+1=2 \cdot 3+1=7 \\
f_{3}=p_{1} \cdot p_{2} \cdot p_{3}+1=2 \cdot 3 \cdot 5+1=31 \\
f_{4}=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4}+1=2 \cdot 3 \cdot 5 \cdot 7+1=211 \\
f_{5}=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5}+1=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11+1=2311 \\
f_{6}=p_{1} \cdot p_{2} \cdot p_{3} \cdot p_{4} \cdot p_{5} \cdot p_{6}+1=2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13+1=30031
\end{gather*}
$$

We can see that $f_{1}, f_{2}, f_{3}, f_{4}$ and f_{5} are all prime. But, $f_{6}=30031=59 \cdot 509$, not prime. Hence, the smallest k is $k=6$
(1.50) Let $d, d^{\prime} \in \mathbb{Z} \backslash\{0\}$. Suppose that $d \mid d^{\prime}$ and $d^{\prime} \mid d$. Then, $d^{\prime}=d \cdot q$, for some $q \in \mathbb{Z}$ and $d=d^{\prime} \cdot p$ for some $p \in \mathbb{Z}$. Replace the former into the latter:

$$
d=d \cdot q \cdot p \Longrightarrow q \cdot p=1 \Longrightarrow q=1 \text { and } p=1 \text { OR } q=-1 \text { and } p=-1
$$

Replacing these solutions back into the original equations, we obtain that $d^{\prime}= \pm d$.
(1.51) To prove the statement we can apply corollary 1.37. Let $I=\left\{x: \zeta^{x}=1\right\}$. First we need to check that the conditions of the corollary hold for I.
(i) Since by definition $\zeta^{0}=1$, then $0 \in I$
(ii) Let $a, b \in I$. By definition of membership, $\zeta^{a}=1=\zeta^{b}$. Divide to obtain: $\frac{\zeta^{a}}{\zeta^{b}}=1 \Rightarrow \zeta^{a-b}=1$, which means that $a-b \in I$
(iii) Let $a \in I$ and $q \in \mathbb{Z}$. By definition of membership, $\zeta^{a}=1$. Raise both sides of this equation to $q:\left(\zeta^{a}\right)^{q}=1^{q} \Rightarrow$ $\zeta^{a q}=1$, hence $a q \in I$

The conditions of corollary 1.37 hold, therefore, there exists $d \in \mathbb{Z}$ with $d>0$ such that $I=\{d \cdot q: q \in \mathbb{Z}\}$. In particular, this means that for any x such that $\zeta^{x}=1, x$ can be written as $x=d \cdot q$, for $q \in \mathbb{Z}$, or in other words, $d \mid x$.
(1.56) Let $a . b$ be integers and $s \cdot a+t \cdot b=1$, for $s, t \in \mathbb{Z}$. Suppose that $g c d(a, b)=c$ for $c>1$. By definition, $c \mid a$ and $c \mid b$, i.e., $a=c \cdot q$ for some $q \in \mathbb{Z}$ and $b=c \cdot p$ for some $p \in \mathbb{Z}$. If we replace these equations into the above linear combination, we obtain: $s(c \cdot q)+t(c \cdot p)=1 \Longleftrightarrow c(s \cdot q+t \cdot p)=1 \Rightarrow s \cdot q+t \cdot p \neq 0$. Moreover, $\frac{1}{s \cdot q+t \cdot p}=c$ implies that $|c| \leq 1$, contradicting our assumption that $c>1$. Therefore, $\operatorname{gcd}(a, b)=1$. Q.E.D.
(1.57) Let $d=\operatorname{gcd}(a, b)$. By theorem 1.35, we have that $d=s \cdot a+t \cdot b$, for some $s, t \in \mathbb{Z}$. We can divide by d because by definition of g.c.d, d is at least 1. Hence,

$$
\frac{d}{d}=\frac{s \cdot a+t \cdot b}{d} \Longleftrightarrow 1=s \frac{a}{d}+t \frac{b}{d}
$$

By definition of g.c.d, $d \mid a$ and $d \mid b$, therefore both $\frac{a}{d}$ and $\frac{b}{d}$ are integers.
Applying the result of the previous exercise, we conclude that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime. Q.E.D.

