M403 Homework 3

Enrique Areyan
 September 12, 2012

(1.28)
(i) True. $\binom{7}{1}=\binom{7}{6}=7 ;\binom{7}{2}=\binom{7}{5}=7 \cdot 3 ;\binom{7}{3}=\binom{7}{4}=7 \cdot 5$
(ii) False. For $n=10$ and $r=2$ we have that: $\binom{10}{2}=\frac{10!}{8!2!}=\frac{90}{2}=45$ is not a multiple of $n=10$
(iii) True. There are $\binom{10}{4}$ quartets of dogs and $\binom{10}{6}$ sextets of cats. By symmetry $\binom{10}{4}=\binom{10}{6}$
(vi) True. A direct consequence of corollary 1.28 setting $q=\frac{k}{n}$
(v) True. Let $f(x)=a x^{2}+b x+c$. Let z be a complex number such that $f(z)=a z^{2}+b z+c=0$. Then,

$$
0=\overline{0}=\overline{a z^{2}+b z+c}=\overline{a z^{2}}+\overline{b z}+\bar{c}=\bar{a} \overline{z^{2}}+\bar{b} \bar{z}+\bar{c}
$$

But, if a, b, c are real numbers, then $a=\bar{a} ; b=\bar{b} ; c=\bar{c}$, hence, $0=a \overline{z^{2}}+b \bar{z}+c=f(\bar{z}) \Longleftrightarrow \bar{z}$ is a root of $f(x)$
(vi) False. Let $f(x)=0 x^{2}+i x+1$. Then i is a root of $f(x)$ since $f(i)=i^{2}+1=-1+1=0$. But, $f(\bar{i})=f(-i)=$ $-i^{2}+1=1+1=2$. Hence \bar{i} is not a root of $f(x)$.
(vii) True. Because $i^{4}=i^{2} i^{2}=-1 \cdot-1=1$ and $i^{1}=i, i^{2}=-1, i^{3}=-i .(-i)^{4}=(-i)^{2}(-i)^{2}=-1 \cdot-1=1$ and $(-i)^{1}=-i,(-i)^{2}=-1,(-i)^{3}=i$.

$$
\begin{array}{rlrl}
\frac{n}{r}\binom{n-1}{r-1} & =\frac{n}{r}\left(\frac{(n-1)!}{(n-1-(-1))!(r-1)!}\right) & & \text { Pascal definition } \\
& \left.=\frac{n(1)!}{(n-1-r-1)!r}\right) \\
& =\frac{n!}{n!}(r+1)! & & \text { Multiplication Associativity and Commutativity } \\
& =\binom{n-r)!r!}{r} & & \text { Arithmetics and definition of Factorial } \tag{1.39}\\
& & \text { Pascal Definition }
\end{array}
$$

Let X be a set with n elements.
(i) To count the number of subsets of X we need to count all possible subsets of size r where $0 \leq r \leq n$, i.e., subsets of size 0 (empty set), subset of size one (singleton), ..., and finally the set X itself. This is exactly the different ways of choosing zero elements from the set, then choosing a single element and so on, and then summing these numbers. It was proven in the last homework that $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}$, which is the expression we need. Hence, the number of subsets of X is 2^{n}. Q.E.D.
(ii) Counting the number of subsets of X is equivalent to counting the number of different bit strings of length n. To see why this is the case, first arrange the elements of the set X, in a linear manner. To construct a subset, take a bit string of length n. A 1 in position k in the bit string indicates that the k th element of X should be included in the subset. Likewise, a 0 indicates that the element should be excluded. All possible subset of X can be constructed in this way. Hence, to count the possible number of subset it suffices to count the number of bit strings.
To construct a bit string of length n we can choose two possibilites for each position, i.e., either a 1 or 0 . Hence, there are $2 \cdot 2 \cdot 2 \cdot \ldots \cdot 2=2^{n}$ bit strings or subsets of X.
(1.40) There are $\binom{45}{5}$ different lottery tickets. To be the winner is to have one ticket, hence $\frac{1}{\binom{45}{5}}=8.18492027 \cdot 10^{-7}$ is the probability of winning.
(1.43) First, note that the number i in polar coordinates is just: $\left(1, \frac{\pi}{2}\right)$. We want to find a complex number z such that $z^{2}=i$, i.e., $(r, \theta)^{2}=\left(1, \frac{\pi}{2}\right)$. By DeMoivre's theorem, $(r, \theta)^{2}=\left(r^{2}, 2 \cdot \theta\right)$, Hence:

$$
\left(r^{2}, 2 \cdot \theta\right)= \begin{cases}r^{2}=1 & \Rightarrow r=1 \text { we take just the positive one } \\ 2 \theta=\frac{\pi}{2}+2 \pi k & \text { for } k=0,1 \Rightarrow \theta=\frac{\pi}{4} \text { OR } \theta=\frac{5 \pi}{4}\end{cases}
$$

The two 2 -roots of i in polar coordinates are ($1, \frac{\pi}{4}$) and ($1, \frac{5 \pi}{4}$). We can easily check that, by De Moivre's Theorem, $\left(1, \frac{\pi}{4}\right)^{2}=\left(1^{2}, 2 \frac{\pi}{4}\right)=\left(1, \frac{\pi}{2}\right)$ and $\left(1, \frac{5 \pi}{4}\right)^{2}=\left(1^{2}, 2 \frac{5 \pi}{4}\right)=\left(1, \frac{\pi}{2}\right)$
(i) We want to show that $w^{n} \stackrel{?}{=} z$.

$$
\begin{aligned}
w^{n} & =(\sqrt[n]{r}[\cos (\theta / n)+i \sin (\theta / n)])^{n} & & \text { By definition of } w \\
& =(\sqrt[n]{r})^{n}\left[\cos \left(\frac{\theta}{n} n\right)+i \sin \left(\frac{\theta}{n} n\right)\right] & & \text { De Moivre's Theorem and law of exponent } \\
& =r[\cos (\theta)+i \sin (\theta)] & & \text { Arithmetic } \\
& =z & & \text { By definition of } z
\end{aligned}
$$

(ii) Let ζ be a primitive nth root of unity. We want to show that $\left(\zeta^{k} w\right)^{n} \stackrel{?}{=} z$.

$$
\begin{aligned}
\left(\zeta^{k} w\right)^{n} & =\left(\zeta^{k}\right)^{n} w^{n} & & \text { Exponent law } \\
& =\left(\zeta^{n}\right)^{k} z & & \text { Exponent law and } w^{n}=z \text { by part (i) } \\
& =1^{k} z & & \text { By hypothesis } \\
& =z & & \text { Q.E.D }
\end{aligned}
$$

(1.45) To find the nth root of a complex number we use De Moivre's Theorem and set if $z=r(\cos \theta+i \sin \theta)$ then

$$
\sqrt[n]{z}=\sqrt[n]{r}\left[\cos \left(\frac{\theta+2 \pi k}{n}\right)+i \sin \left(\frac{\theta+2 \pi k}{n}\right)\right]
$$

For $k=0,1, \ldots, n-1$. Equivalently, we could have used 360° instead of 2π
(i) If $z=8+15 i$, then $r=\sqrt{8^{2}+15^{2}}=\sqrt{64+225}=\sqrt{289}=17$. By potting this number in the complex plane and use basic trigonometry, we find that $\theta=\arctan \left(\frac{15}{8}\right)=61.927^{\circ}$. Hence, the two roots are:

$$
\begin{aligned}
\sqrt{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 0}{2}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 0}{2}\right)\right] & =\sqrt{17}\left[\cos \left(30.9635^{\circ}\right)+i \sin \left(30.9635^{\circ}\right)\right] \\
& =\left(\sqrt{17}, 30.9635^{\circ}\right) \\
\sqrt{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 1}{2}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 1}{2}\right)\right] & =\sqrt{17}\left[\cos \left(210.9635^{\circ}\right)+i \sin \left(210.9635^{\circ}\right)\right] \\
& =\left(\sqrt{17}, 210.9635^{\circ}\right)
\end{aligned}
$$

(ii) Applying the same reasoning as before:

$$
\begin{aligned}
\sqrt[4]{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 0}{4}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 0}{4}\right)\right] & =\sqrt[4]{17}\left[\cos \left(15.48175^{\circ}\right)+i \sin \left(15.48175^{\circ}\right)\right] \\
& =\left(\sqrt[4]{17}, 15.48175^{\circ}\right) \\
\sqrt[4]{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 1}{4}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 1}{4}\right)\right] & =\sqrt[4]{17}\left[\cos \left(105.48175^{\circ}\right)+i \sin \left(105.48175^{\circ}\right)\right] \\
& =\left(\sqrt[4]{17}, 105.48175^{\circ}\right) \\
\sqrt[4]{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 2}{4}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 2}{4}\right)\right] & =\sqrt[4]{17}\left[\cos \left(195.48175^{\circ}\right)+i \sin \left(195.48175^{\circ}\right)\right] \\
& =\left(\sqrt[4]{17}, 195.48175^{\circ}\right) \\
\sqrt[4]{17}\left[\cos \left(\frac{61.927^{\circ}+360^{\circ} \cdot 3}{4}\right)+i \sin \left(\frac{61.927^{\circ}+360^{\circ} \cdot 3}{4}\right)\right] & =\sqrt[4]{17}\left[\cos \left(285.48175^{\circ}\right)+i \sin \left(285.48175^{\circ}\right)\right] \\
& =\left(\sqrt[4]{17}, 285.48175^{\circ}\right)
\end{aligned}
$$

1. Show the triangle inequality: for any complex numbers z and $w,|z+w| \stackrel{?}{\leq}|z|+|w|$.

Proof: Let $z, w \in \mathbb{C}$.

$$
\begin{aligned}
|z+w|^{2} & =(z+w) \overline{(z+w)} & & \text { By definition of multiplication of complex conjugates } \\
& =(z+w)(\bar{z}+\bar{w}) & & \text { Properties of conjugation } \\
& =z \bar{z}+z \bar{w}+w \bar{z}+w \bar{w} & & \text { Distributivity } \\
& =|z|^{2}+|w|^{2}+z \bar{w}+\overline{z \bar{w}} & & \text { Complex conjugation and multiplication } \\
& =|z|^{2}+|w|^{2}+2 \cdot \operatorname{RealPart}(z \bar{w}) & & \text { Since summing a number by its conjugate eliminates de complex part } \\
& \leq|z|^{2}+|w|^{2}+2|z \bar{w}| & & \text { Absolute values are at least as big } \\
& =|z|^{2}+|w|^{2}+2|z||\bar{w}| & & \text { Property of absolute values } \\
& =(|z|+|w|)^{2} & & \text { Arithmetic }
\end{aligned}
$$

Hence

$$
|z+w|^{2} \leq(|z|+|w|)^{2} \Longleftrightarrow(\text { taking square root) }|z+w| \leq|z|+|w|
$$

