M403 Homework 2

Enrique Areyan September 5, 2012

(1) Let b and h be the base and height of a rectangle respectively. Suppose the perimeter is 2b + 2h = 40:

$\frac{2b+2h}{2}$	\geq	$\sqrt{2b2h}$	Inequality of the means
$\frac{40}{2}$	\geq	$\sqrt{4bh}$	By hypothesis the perimeter is 40
$\overline{20}$	\geq	$2\sqrt{bh}$	Arithmetic
10	\geq	\sqrt{bh}	Multiplying by $\frac{1}{2}$ both sides
10^{2}	\geq	bh	since $()^2$ is a monotonic increasing function in \mathcal{R}^+

Hence, the area of the rectangle can be at most $10^2 = 100$ exactly when $2b = 2h \iff b = h = 10$, i.e., an square.

(2) Let w, d and h be the width, depth and height of a rectangular box in 3-space. Suppose w + d + h = 60:

$\frac{w+d+h}{3}$	\geq	$\sqrt[3]{wdh}$	Inequality of the means
$\frac{60}{3}$	\geq	$\sqrt[3]{wdh}$	By hypothesis
20	\geq	$\sqrt[3]{wdh}$	Arithmetic
20^{3}	\geq	wdh	since $()^3$ is a monotonic increasing function

Hence, the volume of the box can be at most $20^3 = 8,000$ exactly when w = d = h = 20, i.e., a cube.

(3) Let w, d and h be the width, depth and height of a rectangular box in 3-space. Suppose

$$2(wd + dh + wh) = 600 \Rightarrow wd + dh + wh = 300:$$

$\frac{wd+dh+wh}{3}$	\geq	$\sqrt[3]{wddhwh}$	Inequality of the means
$\frac{300}{3}$	\geq	$\sqrt[3]{wddhwh}$	By hypothesis
100	\geq	$\sqrt[3]{wddhwh}$	Arithmetic
100^{3}	\geq	wddhwh	since $()^3$ is a monotonic increasing function
1,000,000	\geq	$(wdh)^2$	Arithmetic and exponent rule
$\sqrt{1,000,000}$	\geq	wdh	since $\sqrt{()}$ is a monotonic increasing function in \mathcal{R}^+

Hence, the volume of the box can be at most $\sqrt{1,000,000} = 1,000$ exactly when $wd = dh = wh \iff w = d = h = 10$, i.e., a cube.

(1.17) Prove that every positive integer n has a unique factorization $n = 3^k m$, where $k \ge 0$ and m is not multiple of 3.

Proof by 2nd form of induction: $S(n): n = 3^k m$, where $k \ge 0$ and m is not multiple of 3.

Base Case: $S(1): 1 = 3^0 \cdot 1$, 1 is not multiple of 3. This is true.

Inductive Step: Assument that S(k) is true for every k < n. We want to show that S(n) is true.

- (i) If n is not multiple of 3, then: $n = 3^0 n, k = 0, m = n$; and we are done.
- (ii) Otherwise, if n is multiple of 3, then:

n	=	3a	for some a such that $1 \le a < n$
	=	$3(3^pq)$	By inductive hypothesis, where $p \ge 0$ and q not multiple of 3
	=	$3^{p+1}q$	Exponent rule, $k = p + 1$ and $m = q$ not multiple of 3

To show that this decomposition is unique, suppose that it is not, i.e., that there exists $k' \ge 0$ and m' not multiple of 3, such that $n = 3^{k'}m'$ and $(k, m) \ne (k', m')$. Either k' = 0, in which case n is not multiple of 3 which is impossible or $k' \ge 1 \Rightarrow 3a = n = 3^{k'}m' \Rightarrow a = 3^{k'-1}m'$, where a was $a = 3^pq = 3^{k-1}m$. Hence, a has two different decompositions which is a contradiction to the proposition holding for a < n. Q.E.D

(1.19) If F_n denotes the *n*th term of the Fibonacci sequence, prove that

$$\sum_{n=1}^{m} F_n = F_{m+2} - 1$$

Proof: is by induction on m. $S(m) : \sum_{n=1}^{m} F_n = F_{m+2} - 1$

Base Case: $S(1): F_1 = 1 = 2 - 1 = F_3 - 1$. Base case holds true.

Inductive Step: Assume S(m) is true. We want to show that S(m+1) is true, i.e., $\sum_{n=1}^{m+1} F_n \stackrel{?}{=} F_{(m+1)+2} - 1$

$$\sum_{n=1}^{m+1} F_n = (\sum_{n=1}^m F_n) + F_{m+1}$$
 Separating the sum
= $(F_{m+2} - 1) + F_{m+1}$ By inductive hypothesis
= $F_{m+2} + F_{m+1} - 1$ Commutativity & associativity
= $F_{m+3} - 1$ Definition of Fibonacci sequence
= $F_{(m+1)+2} - 1$ Q.E.D

(1.30) Show that $\binom{n}{r} = \binom{n}{n-r}$.

$$\mathbf{Proof}:\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n!}{(n-n+r)!(n-r)!} = \frac{n!}{(n-(n-r))!(n-r)!} = \binom{n}{(n-r)!}$$

(1.31) Show that $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$

By corollary 1.19, for any real number x and for all integers $n \ge 0$,

$$(1+x)^n = \sum_{r=0}^n \binom{n}{r} x^r$$

Simply set x = 1, i.e.:

$$2^{n} = (1+1)^{n} = \sum_{r=0}^{n} \binom{n}{r} 1^{r} = \binom{n}{0} 1^{0} + \binom{n}{1} 1^{1} + \binom{n}{2} 1^{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{1} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{1} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} 1^{n} = \binom{n}{1} + \binom{n}{1}$$

(1.32)

(i) Using x = -1 in corollary 1.19 we obtain:

$$0 = 0^{n} = (1-1)^{n} = \sum_{r=0}^{n} \binom{n}{r} (-1)^{r} = \binom{n}{0} (-1)^{0} + \binom{n}{1} (-1)^{1} + \binom{n}{2} (-1)^{2} + \dots + \binom{n}{n} (-1)^{n} = \binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^{n} \binom{n}{n}$$

(ii) Just move all odd (negative) terms to the right-hand side of the equation:

$$\binom{n}{0} - \binom{n}{1} + \binom{n}{2} - \dots + (-1)^n \binom{n}{n} = 0 \iff \binom{n}{0} + \binom{n}{2} + \dots + \binom{n}{n-1} = \binom{n}{1} + \binom{n}{3} + \dots + \binom{n}{n}$$
$$\iff \binom{n}{r} = \binom{n}{r'}, \text{ where } r \text{ is even and } r' \text{ is odd}$$