M403 Homework 2

Enrique Areyan

September 5, 2012

(1) Let b and h be the base and height of a rectangle respectively. Suppose the perimeter is $2 b+2 h=40$:

$\frac{2 b+2 h}{2}$	$\geq \sqrt{2 b 2 h}$	Inequality of the means
$\frac{40}{2}$	$\geq \sqrt{4 b h}$	By hypothesis the perimeter is 40
20	$\geq 2 \sqrt{b h}$	Arithmetic
10	$\geq \sqrt{b h}$	Multiplying by $\frac{1}{2}$ both sides
10^{2}	$\geq b h$	since ()2 is a monotonic increasing function in \mathcal{R}^{+}

Hence, the area of the rectangle can be at most $10^{2}=100$ exactly when $2 b=2 h \Longleftrightarrow b=h=10$, i.e., an square.
(2) Let w, d and h be the width, depth and height of a rectangular box in 3 -space. Suppose $w+d+h=60$:

$\frac{w+d+h}{3}$	$\geq \sqrt[3]{w d h}$	Inequality of the means
$\frac{60}{3}$	$\geq \sqrt[3]{w d h}$	By hypothesis
20	$\geq \sqrt[3]{w d h}$	Arithmetic
20^{3}	$\geq w d h$	since ()3 is a monotonic increasing function

Hence, the volume of the box can be at most $20^{3}=8,000$ exactly when $w=d=h=20$, i.e., a cube.
(3) Let w, d and h be the width, depth and height of a rectangular box in 3-space. Suppose

$$
2(w d+d h+w h)=600 \Rightarrow w d+d h+w h=300:
$$

$\frac{w d+d h+w h}{3}$	$\geq \sqrt[3]{w d d h w h}$	Inequality of the means
$\frac{300}{3}$	$\geq \sqrt[3]{w d d h w h}$	By hypothesis
100	$\geq \sqrt[3]{w d d h w h}$	Arithmetic
100^{3}	$\geq w d d h w h$	since ()3 is a monotonic increasing function
$1,000,000$	$\geq(w d h)^{2}$	Arithmetic and exponent rule
$\sqrt{1,000,000}$	$\geq w d h$	since $\sqrt{()}$ is a monotonic increasing function in \mathcal{R}^{+}

Hence, the volume of the box can be at most $\sqrt{1,000,000}=1,000$ exactly when $w d=d h=w h \Longleftrightarrow w=$ $d=h=10$, i.e., a cube.
(1.17) Prove that every positive integer n has a unique factorization $n=3^{k} m$, where $k \geq 0$ and m is not multiple of 3 .

Proof by 2 nd form of induction: $S(n): n=3^{k} m$, where $k \geq 0$ and m is not multiple of 3 .
Base Case: $S(1): 1=3^{0} \cdot 1,1$ is not multiple of 3 . This is true.
Inductive Step: Assument that $S(k)$ is true for every $k<n$. We want to show that $S(n)$ is true.
(i) If n is not multiple of 3 , then: $n=3^{0} n, k=0, m=n$; and we are done.
(ii) Otherwise, if n is multiple of 3 , then:

$$
\begin{aligned}
n & =3 a & \text { for some } a \text { such that } 1 \leq a<n \\
& =3\left(3^{p} q\right) & \text { By inductive hypothesis, where } p \geq 0 \text { and } q \text { not multiple of } 3 \\
& =3^{p+1} q & \text { Exponent rule, } k=p+1 \text { and } m=q \text { not multiple of } 3
\end{aligned}
$$

To show that this decomposition is unique, suppose that it is not, i.e., that there exists $k^{\prime} \geq 0$ and m^{\prime} not multiple of 3 , such that $n=3^{k^{\prime}} m^{\prime}$ and $(k, m) \neq\left(k^{\prime}, m^{\prime}\right)$. Either $k^{\prime}=0$, in which case n is not multiple of 3 which is impossible or $k^{\prime} \geq 1 \Rightarrow 3 a=n=3^{k^{\prime}} m^{\prime} \Rightarrow a=3^{k^{\prime}-1} m^{\prime}$, where a was $a=3^{p} q=3^{k-1} m$. Hence, a has two different decompositions which is a contradiction to the proposition holding for $a<n$. Q.E.D
(1.19) If F_{n} denotes the nth term of the Fibonacci sequence, prove that

$$
\sum_{n=1}^{m} F_{n}=F_{m+2}-1
$$

Proof: is by induction on $m . S(m): \sum_{n=1}^{m} F_{n}=F_{m+2}-1$
Base Case: $S(1): F_{1}=1=2-1=F_{3}-1$. Base case holds true.
Inductive Step: Assume $S(m)$ is true. We want to show that $S(m+1)$ is true, i.e., $\sum_{n=1}^{m+1} F_{n} \stackrel{?}{=} F_{(m+1)+2}-1$

$$
\begin{array}{rlr}
\sum_{n=1}^{m+1} F_{n} & =\left(\sum_{n=1}^{m} F_{n}\right)+F_{m+1} & \text { Separating the sum } \\
& =\left(F_{m+2}-1\right)+F_{m+1} & \text { By inductive hypothesis } \\
& =F_{m+2}+F_{m+1}-1 & \text { Commutativity \& associativity } \\
& =F_{m+3}-1 & \text { Definition of Fibonacci sequence } \\
& =F_{(m+1)+2}-1 &
\end{array}
$$

(1.30) Show that $\binom{n}{r}=\binom{n}{n-r}$.

$$
\text { Proof : }\binom{n}{r}=\frac{n!}{(n-r)!r!}=\frac{n!}{(n-n+r)!(n-r)!}=\frac{n!}{(n-(n-r))!(n-r)!}=\binom{n}{n-r}
$$

(1.31) Show that $\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n}=2^{n}$

By corollary 1.19, for any real number x and for all integers $n \geq 0$,

$$
(1+x)^{n}=\sum_{r=0}^{n}\binom{n}{r} x^{r}
$$

Simply set $x=1$, i.e.:

$$
\begin{equation*}
2^{n}=(1+1)^{n}=\sum_{r=0}^{n}\binom{n}{r} 1^{r}=\binom{n}{0} 1^{0}+\binom{n}{1} 1^{1}+\binom{n}{2} 1^{2}+\ldots+\binom{n}{n} 1^{n}=\binom{n}{0}+\binom{n}{1}+\binom{n}{2}+\ldots+\binom{n}{n} \tag{1.32}
\end{equation*}
$$

(i) Using $x=-1$ in corollary 1.19 we obtain:

$$
\begin{gathered}
0=0^{n}=(1-1)^{n}=\sum_{r=0}^{n}\binom{n}{r}(-1)^{r}=\binom{n}{0}(-1)^{0}+\binom{n}{1}(-1)^{1}+\binom{n}{2}(-1)^{2}+\ldots+\binom{n}{n}(-1)^{n}= \\
=\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}
\end{gathered}
$$

(ii) Just move all odd (negative) terms to the right-hand side of the equation:

$$
\begin{gathered}
\binom{n}{0}-\binom{n}{1}+\binom{n}{2}-\ldots+(-1)^{n}\binom{n}{n}=0 \Longleftrightarrow\binom{n}{0}+\binom{n}{2}+\ldots+\binom{n}{n-1}=\binom{n}{1}+\binom{n}{3}+\ldots+\binom{n}{n} \\
\Longleftrightarrow\binom{n}{r}=\binom{n}{r^{\prime}}, \text { where } r \text { is even and } r^{\prime} \text { is odd }
\end{gathered}
$$

