M403 Homework 13

Enrique Areyan
 December 5, 2012

(i) True. We need to check three properties: 1) $e \in H$. This is true because H is a subgroup of K and K is a subgroup of G and hence, K inherits the identity of G and H inherits the same identity from K. 2) Since H is a subgroup, H is closed under its binary operation and 3) likewise, since H is a subgroup, H is closed under taking inverses.
(ii) True. Just use the same identity of the group for the subgroup and all three subgroup conditions follows trivially from the definition of group.
(iii) False. Since $e \notin G$, i.e., there is no identity.
(iv) False. Let $S_{3}=\left\{i d,\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right),\left(\begin{array}{ll}2 & 3\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3\end{array}\right),\left(\begin{array}{ll}1 & 3\end{array}\right)\right\}$. The order of S_{3} is 6 , but there is no element of order 6 .
(v) True. Since the order of S_{n} is n !, we can just apply Lagrange's Theorem.
(vi) False. It might be possible for the intersection to be empty.
(vii) True. Since the intersection of any subgroups is a subgroup. Moreover, every subgroup of a cyclic subgroup is cyclic.
(viii) False. Let $X=\{1\} \in \mathbb{Z}$. Then, $\langle-1\rangle=\mathbb{Z}$
(ix) True $i d \in F$, since the identity moves a finite number of elements (moves zero elements). If $\alpha, \beta \in F$, then $\alpha \circ \beta \in F$, since the composition will also move a finite number of elements. If $\alpha \in F$, then the inverse will move the same number of elements which means that $\alpha^{-1} \in F$.
(x) True. By Lagrange's theorem, a proper subgroup H of S_{3} is such that $|H|\left|\left|S_{3}\right|=6\right.$. Hence, $| H \mid=1,2$ or 3 . In exercise 2.70 (i) I show that every group of prime order is cyclic.
(xi) False. The counterexample can be found on page 148 , the subgroup V of S_{6} where each element has order 2 so that there is no generator and hence, V is not cyclic.
(2.53)
(i) Let G be a group and H be a subgroup of G. Let $g \in G$. By definition, $g H=\{g h: h \in H\}$. In particular, since H is a subgroup, $e \in H$ and thus, $g \cdot e=g \in g H$. If we consider $a_{1} H, a_{2} H, \ldots, a_{t} H$ to be all the distinct cosets of H in G, then there exists i such that $g H=a_{i} H$, in particular take $g=a_{i}$.
(ii) Let $c \in a H \cap b H$. Then $c \in a H$ and $c \in b H$. By definition of left cosets, $c=a h_{1}$ for some $h_{1} \in H$ and $c=b h_{2}$ for some $h_{2} \in H$. Hence, $a h_{1}=b h_{2}$. Operating by h_{2}^{-1} on both sides we get that $a h_{1} h_{2}^{-1}=b$. Let $h_{3}=h_{1} h_{2}^{-1}$, then we can write $b=a h_{3}$ where $h_{3} \in H$. Therefore, $b \in a H$. A similar arguments shows that $a \in b H$ and hence, $a H=b H$. Hence, if $i \neq j$ we must have that $a_{i} H \cap a_{j} H=\emptyset$
(2.55) Let $G=\mathbb{Z} / 6=(\{0,1,2,3,4,5\},+, 0)$. Let $H=\{0,4,2\}$ and $K=\{0,3\}$. Both H and K are subgroups of G since, 1) $e=0 \in H, K .2)$ for $H: 4+4=8 \equiv 2(\bmod 6)$ and $4+2=2+4=6 \equiv 0(\bmod 6)$ (the other combinations being trivial); for $K: 3+3=6 \equiv 0(\bmod 6)$ (the other combinations being trivial). Finally 3$)$ for H : the inverse of 4 is 2 and for K : the inverse of 3 is itself.

We can see that $H \cup K=\{0,2,3,4\}$ is not a subgroup since the operation is not closed: take $2,3 \in H \cup K$, the sum $2+3=5 \notin H \cup K$.
(2.57) By proposition 2.76 we know that $H \cap K$ is a subgroup of H and a subgroup of K. Therefore, by Lagrange's theorem, $|H \cap K|$ divides $|H|$ and also divides $|K|$. But $|H|$ and $|K|$ are relatively prime and so the only common divisor is one. In particular this means that $|H \cap K|$ has only one element, and since this is a group it has to contain the identity, hence $H \cap K=\{e\}$
(2.59) Let G be a group of order 4. If there exists $a \in G$ such that $\langle a\rangle=G$, then G is cyclic and we are done. Otherwise, let $a \in G$. Consider $\langle a\rangle$ as a proper subgroup of G. Since $|G|=4$, by Lagrange's theorem it must be the case that $|\langle a\rangle|$ divides $|G|$ and hence, $|\langle a\rangle|=2$ or $|\langle a\rangle|=1$. If $|\langle a\rangle|=2$ then by definition $a^{2}=1$. If $|\langle a\rangle|=1$ then $a=1$ which implies that $a^{2}=1$. In either case we obtain the result.
Finally, if G is cyclic then it is abelian. If the preceding result holds then by exercise $2.44 G$ is abelian.
(2.63) (i) By definition: $\langle(12)\rangle=\{i d,(12)\}$. Let $\alpha \in S_{3}$ be $\alpha=\left(\begin{array}{ll}4 & 1\end{array}\right)$. Then $\left(\begin{array}{ll}4 & 1\end{array}\right)\left\langle\left(\begin{array}{ll}1 & 2)\end{array}\right)=\left\{\left(\begin{array}{ll}4 & 1\end{array}\right),\left(\begin{array}{ll}2 & 4\end{array}\right)\right\} \neq\right.$ $\left\langle\left(\begin{array}{ll}1 & 2\end{array}\right)\right\rangle\left(\begin{array}{ll}4 & 1\end{array}\right)=\left\{\left(\begin{array}{ll}4 & 1\end{array}\right),\left(\begin{array}{lll}1 & 4 & 2\end{array}\right)\right\}$
(ii) Let $f: a H \mapsto H a^{-1}$ be defined as $f(a H)=H a^{-1}$. If we show that this is a bijection, then we have showed that the number of left cosets and right cosets is the same.
Suppose that $g_{1} H=g 2 H$. Then, $g_{1}=g_{1} \cdot e \in g_{1} H=g_{2} H$, so $g_{1}=g_{2} \cdot h$ for some $h \in H$. Now we compute, $f\left(g_{1} H\right)=H g_{1}^{-1}=h^{-1} g_{2}^{-1}=f\left(g_{2} H\right)$. Hence, f is injective.
Now, let $H b$ be a right coset. Since H is a group, b has a unique inverse b^{-1} such that $f\left(b^{-1} H\right)=H\left(b^{-1}\right)^{-1}=H b$. This means that f is surjective.
Since f is both injective and surjective, it is a bijection. In particular this means that the sets of left and right cosets have the same number of elements.
(i) True by definition.
(ii) False since the operation of the group \mathbb{R}^{\times}is not + .
(iii) True. The inclusion $f: \mathbb{Z} \mapsto \mathbb{R}$ is defined as $f(z)=z$. Hence, for every $z_{1}, z_{2} \in \mathbb{Z}, f\left(z_{1}+z_{2}\right)=z_{1}+z_{2}=$ $f\left(z_{1}\right)+f\left(z_{2}\right)$
(iv) True. Just set $f(0)=(1)$. Then, $f(0+0)=f(0)=(1)=(1) \circ(1)=f(0) \circ f(0)$
(v) False. Consider $\mathbb{Z} / 6$ and S_{3}, both of order 6 and not isomorphic (see 2.70, (ii)).
(vi) True. Any group of primer order is cyclic (see 2.70 (i)). Let G_{1} and G_{2} be two groups of prime order, then $f: G_{1} \mapsto G_{2}$ given by $f\left(a^{i}\right)=b^{i}$ is an isomorphism.
(i) Claim: a group G is not abelian only in case that $|G|>4$. Proof: to be non-abelian means that there exists $x, y \in G$ such that $x y \neq y x$. Since G is a group, we know that the identity e is in G. It is obvious that the identity respects commutativity since $x e=e x=x$ and $e y=y e=y$. Hence, we need distinct x, y such that operating them in different order results in two different elements $x y \neq y x$. In sum we need at least $e, x, y, x y, y x \in G$, all distinct, in order to have a non-abelian group.

Now we need to analyze the case where G is a group such that $|G|=5$. To do this I will show the following: Claim: a group of prime order is cyclic. Once we know that the group is cyclic we can conclude that it is abelian. Proof: Let G be a group such that $|G|=p$ where p is prime. Let $a \in G$. Consider the subgroup $\langle a\rangle$. By Lagrange's theorem, $|\langle a\rangle|$ divides $|G|$. Since $|G|$ is prime, the only divisors of $|G|$ are 1 and p. So either $|\langle a\rangle|=1$ or $|\langle a\rangle|=p$. If $|\langle a\rangle|=1$ then $\langle a\rangle=\{e\}$. Otherwise, $|\langle a\rangle|=p$ which implies that $\langle a\rangle=G$ so G is cyclic.

Using the above claim we can conclude that since 5 is a prime number, a group G of order 5 is cyclic. A cyclic group is abelian so G is abelian. (Note that this same argument applies to groups of order 1,2 and 3). This shows that a group of order less than 6 is abelian.
(ii) Consider the two groups: $\mathbb{Z} / 6$ and S_{3}, both of order 6 . Claim: these groups are non-isomorphic. Proof: Suppose that there exists an isomorphism $f: S_{3} \mapsto \mathbb{Z} / 6$. This isomorphism must preserve the identity element, i.e., $f(i d)=0$. If we take $0=f(i d)=f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)^{2}\right)=f\left(\left(\begin{array}{ll}1 & 2)\end{array}\right.\right.$ (122$\left.)\right)=f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)+f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)=2 f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right) \Rightarrow 0=$ $2 f((12)) \Rightarrow f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)=0$ OR $f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)=3$. Therefore, $f\left(\left(\begin{array}{ll}1 & 2\end{array}\right)\right)=3$ since it cannot be the identity. If we perform the same calculations but with (13) we will also obtain that $f((13))=3$ so that f is not injective, a contradiction. Therefore, there exists no such isomorphism f.

