M403 Homework 12

Enrique Areyan November 28, 2012

- 1. I) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 8 & 7 & 2 & 1 & 4 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 5 & 2 & 6 \end{pmatrix} \begin{pmatrix} 3 & 8 \end{pmatrix} \begin{pmatrix} 4 & 7 \end{pmatrix}$. Then $sgn(\alpha) = (-1)^{8-3} = (-1)^5 = -1$
 - II) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 8 & 7 & 5 & 4 & 6 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 8 & 6 & 5 & 7 \end{pmatrix}$. Then $sgn(\alpha) = (-1)^{8-2} = (-1)^6 = 1$
 - III) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 2 & 5 & 6 & 7 & 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$. Then $sgn(\alpha) = (-1)^{8-1} = (-1)^7 = 1$

IV) Let
$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix} \in S_{10}$$
. Then $sgn(\alpha) = (-1)^5 = -1$

- V) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix} \in S_{10} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 9 & 10 \end{pmatrix} =$ = $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix} \begin{pmatrix} 9 \end{pmatrix} \begin{pmatrix} 10 \end{pmatrix}$. Then $sgn(\alpha) = (-1)^{10-3} = (-1)^7 = -1$
- VI) Let $\alpha = \begin{pmatrix} 1 & 5 & 9 \end{pmatrix} \begin{pmatrix} 2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \in S_{10} = \begin{pmatrix} 1 & 5 & 9 \end{pmatrix} \begin{pmatrix} 2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 8 \end{pmatrix}$. Then $sgn(\alpha) = (-1)^{10-6} = (-1)^4 = 1$

VII) Let
$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 4 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 \end{pmatrix} \in S_8$$
. Then $sgn(\alpha) = (-1)^5 = -1$

Is the same as IV) since the number of transpositions are the same.

- VIII) Let $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \end{pmatrix} \begin{pmatrix} 5 & 6 & 7 & 8 \end{pmatrix} \in S_8 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}$ Then $sgn(\alpha) = (-1)^{8-1} = (-1)^7 = -1$
 - IX) Let $\alpha = \begin{pmatrix} 1 & 5 & 9 \end{pmatrix} \begin{pmatrix} 2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \in S_{12} = \begin{pmatrix} 1 & 5 & 9 \end{pmatrix} \begin{pmatrix} 2 & 6 & 10 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix} \begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 7 \end{pmatrix} \begin{pmatrix} 8 \end{pmatrix} \begin{pmatrix} 11 \end{pmatrix} \begin{pmatrix} 12 \end{pmatrix}$ Then $sgn(\alpha) = (-1)^{12-8} = (-1)^4 = 1$
- 2. Given $\alpha_n \in S_n$, by proposition 2.35 we can write it as a product of k transpositions, i.e.:

$$\alpha = \left(\begin{array}{cc} i_1 & i_2 \end{array}\right) \left(\begin{array}{cc} i_3 & i_4 \end{array}\right) \cdots \left(\begin{array}{cc} i_{r-1} & i_r \end{array}\right)$$

By proposition 2.27, the inverse of α is:

$$\alpha^{-1} = \begin{pmatrix} i_r & i_{r-1} \end{pmatrix} \cdots \begin{pmatrix} i_4 & i_3 \end{pmatrix} \begin{pmatrix} i_2 & i_1 \end{pmatrix}$$

Clearly, both α and α^{-1} have the same number of transpositions, i.e., both have k transposition. By definition 2 of sign, $sgn(\alpha) = (-1)^k = sgn(\alpha^{-1})$

3. 2.23 Consider the complete factorizations of σ and σ' .

$$\sigma = \beta_1 \beta_2 \cdots \beta_t(j)$$
 and $\sigma' = \beta_1 \beta_2 \cdots \beta_t$

Where $t \in \mathbb{N}$. Since $\sigma \in S_n$, $\sigma' \in S_X$ and $|S_n| = n$, $|S_X| = n - 1$, by definition of sign we have that $sgn(\sigma) = (-1)^{n-(t+1)} = (-1)^{n-t-1} = (-1)^{(n-1)-t} = sgn(\sigma')$

2.26 Let $\alpha = (i_1 \quad i_2 \quad \cdots \quad i_r) \in S_n$ be an *r*-cycle.

 (\Rightarrow) Assume that α is an even permutation. By definition, $sgn(\alpha) = 1 = (-1)^k$ where k is an even number, i.e, k = 2l where $l \in \mathbb{N}$. We also know that α can be written as the product of k transpositions:

$$\alpha = \left(\begin{array}{cc} i_1 & i_r \end{array}\right) \left(\begin{array}{cc} i_1 & i_{r-1} \end{array}\right) \cdots \left(\begin{array}{cc} i_1 & i_2 \end{array}\right)$$

Since we fix i_1 for each transposition and vary i_j where $2 \le j \le r$, we can conclude that there are r-1 transpositions in the above decomposition. Hence, $r-1 = k = 2l \Rightarrow r = 2l+1$, which means that r is an odd number.

(\Leftarrow) Let r be an odd number, i.e., r = 2l - 1 where $l \in \mathbb{N}$. Again, we can write α as a product of transpositions:

$$\alpha = \begin{pmatrix} i_1 & i_r \end{pmatrix} \begin{pmatrix} i_1 & i_{r-1} \end{pmatrix} \cdots \begin{pmatrix} i_1 & i_2 \end{pmatrix}$$

There are r-1 = 2l-2 transpositions. If we compute the sign of α we get: $sgn(\alpha) = (-1)^{2l-2} = (-1)^{2l}(-1)^{-2} = 1$, which by definition means that α is an even permutation.

4. 2.36 i) **False**. $e(e(2,3), 4) = e(8, 4) = 8^4 = 4096 \neq e(2, e(3, 4)) = e(2, 81) = 2^{81}$.

- ii) False Consider the group (S_3, \circ) . Let $\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \in S_3$ and $\beta = \begin{pmatrix} 2 & 3 \end{pmatrix} \in S_3$. Then $\alpha\beta = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \neq \begin{pmatrix} 1 & 3 & 2 \end{pmatrix} = \beta\alpha$. Hence, (S_3, \circ) is a non-abelian group which shows that not all groups are abelian.
- iii) **True**, (\mathbb{R}^+, \cdot) is a group since $\cdot : \mathbb{R}^+ \times \mathbb{R}^+$ is a binary associative operation. Also $1 \in \mathbb{R}^+$ is the unity since $1 \cdot x = x \cdot 1 = x$ and each element $x \in \mathbb{R}^+$ has an inverse $x^{-1} = \frac{1}{x} \in \mathbb{R}^+$.
- iv) **False**, since there is no identity element. The only element that works for identity is 0 since 0+x = x+0 = x but $0 \notin \mathbb{R}^+$
- 2.37 Given elements $a_1, a_2, ..., a_n$ not necessarily distinct in a group G, we wish to prove that the inverse of $a_1 \cdot a_2 \cdots a_n$ is $a_n^{-1} \cdots a_2^{-1} \cdot a_1^{-1}$. By definition of inverse, we need to prove that $(a_n^{-1} \cdots a_2^{-1} \cdot a_1^{-1}) \cdot (a_1 \cdot a_2 \cdots a_n) \stackrel{?}{=} e$, where e is the unit of the group G. We prove this as follow:

$$(a_n^{-1} \cdots a_2^{-1} \cdot a_1^{-1}) \cdot (a_1 \cdot a_2 \cdots a_n) = a_n^{-1} \cdots a_2^{-1} \cdot (a_1^{-1} \cdot a_1) \cdot a_2 \cdots a_n$$

$$= a_n^{-1} \cdots a_2^{-1} \cdot e \cdot a_2 \cdots a_n$$

$$= a_n^{-1} \cdots a_2^{-1} \cdot (e \cdot a_2) \cdots a_n$$

$$= a_n^{-1} \cdots a_2^{-1} \cdot a_2 \cdots a_n$$

$$= a_n^{-1} \cdots a_n^{-1} \cdots a_n^{-1} \cdots a_n^{-1} \cdots a_n^{-1}$$

Applying the above steps n-2 more times

$$= a_n^{-1} \cdot a_n$$

= e By definition of inverse

 $\Rightarrow (a_n^{-1} \cdots a_2^{-1} \cdot a_1^{-1}) \cdot (a_1 \cdot a_2 \cdots a_n) = e, \text{ which means that } (a_n^{-1} \cdots a_2^{-1} \cdot a_1^{-1}) \text{ is the inverse of } (a_1 \cdot a_2 \cdots a_n).$ By proposition 2.45 it follows that this same inverse works on the right as well.

2.38 (i) Let
$$\alpha = \begin{pmatrix} 1 & 2 \end{pmatrix} \begin{pmatrix} 4 & 3 \end{pmatrix} \begin{pmatrix} 1 & 3 & 5 & 4 & 2 \end{pmatrix} \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 5 \end{pmatrix} \begin{pmatrix} 1 & 3 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

 $= \begin{pmatrix} 1 & 5 & 4 \end{pmatrix} \begin{pmatrix} 2 & 3 \end{pmatrix} \Rightarrow sgn(\alpha) = (-1)^{5-2} = -1, \text{ which means that } \alpha \text{ is an odd permutation. The order of } \alpha \text{ is the lcm of the lenght of its cycle in the complete factorization, i.e., } O(\alpha) = lcm(2,3) = 6.$ The inverse is: $\alpha^{-1} = \begin{pmatrix} 3 & 2 \end{pmatrix} \begin{pmatrix} 4 & 5 & 1 \end{pmatrix}$

(ii) For 2.22 $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 9 \end{pmatrix} \begin{pmatrix} 8 & 2 \end{pmatrix} \begin{pmatrix} 3 & 7 \end{pmatrix} \begin{pmatrix} 4 & 6 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix}$ and hence, the order is lcm(2, 2, 2, 2, 1) = 2.

For 2.28, we have that $f(0) \equiv 0 \pmod{11}$, $f(1) \equiv 1 \pmod{11}$, $f(2) \equiv 6 \pmod{11}$, $f(3) \equiv 0 \pmod{9}$, $f(4) \equiv 5 \pmod{11}$, $f(5) \equiv 0 \pmod{3}$, $f(6) \equiv 10 \pmod{11}$, $f(7) \equiv 0 \pmod{2}$, $f(8) \equiv 8 \pmod{11}$, $f(9) \equiv 4 \pmod{11}$, $f(10) \equiv 7 \pmod{11}$. We can write f as a permutation as follow:

Hence, the order of f is lcm(4,4) = 4

2.39 (i) Since any permutation can be factored into disjoint r-cycles, it suffices to count them to get the total number of permutation of a particular order. In particular, to count the number of elements of order 2 we need only

to count every possible 2-cycle since $\begin{pmatrix} i_1 & i_2 \end{pmatrix}^2 = (1)$ or product of disjoint 2 cycles since disjoint cycles have the property $\begin{bmatrix} \begin{pmatrix} i_1 & i_r \end{pmatrix} & i_1 & i_r \end{bmatrix}^2 = \begin{pmatrix} i_1 & i_r \end{pmatrix}^2 \begin{pmatrix} i_1 & i_r \end{pmatrix}^2 = (1)(1) = (1)$, etc.

Hence, for S_5 : there are $\frac{5\cdot 4}{2} = 10$ one 2-cycles of, and $\frac{5\cdot 4\cdot 3\cdot 2}{2\cdot 2\cot 2!} = \frac{120}{8} = 15$ two 2-cycles, so there are 10 + 15 = 25 elements of order 2 in S_5 .

For S_6 , there are $\frac{6\cdot 5}{2} = 15$ one 2-cycles, and $\frac{6\cdot 5\cdot 4\cdot 3}{2\cdot 2\cdot 2!} = 45$ two 2-cycles, and $\frac{6!}{2\cdot 2\cdot 3!} = 15$ three 2-cycles, so there are 15 + 15 + 45 = 75 elements of order 2 in S_6 .

(ii) Given S_n , the number of elements of order 2 in S_n is:

$$\sum_{i=1}^{k} \frac{n!}{2^{i} \cdot i! \cdot (n-2i)!}$$

where $k \in \mathbb{N}$ is such that n = 2k if n is even and n = 2k + 1 if n is odd. Note that if n = 1 then there are no 2-cycles.