M403 Homework 12

Enrique Areyan

November 28, 2012

1. I) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 5 & 6 & 8 & 7 & 2 & 1 & 4 & 3\end{array}\right)=\left(\begin{array}{llll}1 & 5 & 2 & 6\end{array}\right)\left(\begin{array}{ll}3 & 8\end{array}\right)\left(\begin{array}{ll}4 & 7\end{array}\right)$.

Then $\operatorname{sgn}(\alpha)=(-1)^{8-3}=(-1)^{5}=-1$
II) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 8 & 7 & 5 & 4 & 6\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{lllll}4 & 8 & 6 & 5 & 7\end{array}\right)$.

Then $\operatorname{sgn}(\alpha)=(-1)^{8-2}=(-1)^{6}=1$
III) Let $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 2 & 5 & 6 & 7 & 8 & 1\end{array}\right)=\left(\begin{array}{llllllll}1 & 3 & 2 & 4 & 5 & 6 & 7 & 8\end{array}\right)$.

Then $\operatorname{sgn}(\alpha)=(-1)^{8-1}=(-1)^{7}=1$

IV $)$ Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)\left(\begin{array}{cc}5 & 6\end{array}\right) \in S_{10}$. Then $\operatorname{sgn}(\alpha)=(-1)^{5}=-1$
V) Let $\alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{cccc}5 & 6 & 7 & 8\end{array}\right) \in S_{10}=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 9 & 10\end{array}\right)=$ $=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right)(9)(10)$. Then $\operatorname{sgn}(\alpha)=(-1)^{10-3}=(-1)^{7}=-1$
VI) Let $\alpha=\left(\begin{array}{lll}1 & 5 & 9\end{array}\right)\left(\begin{array}{lll}2 & 6 & 10\end{array}\right)(4) \in S_{10}=\left(\begin{array}{lll}1 & 5 & 9\end{array}\right)\left(\begin{array}{lll}2 & 6 & 10\end{array}\right)(4)(3)(7)(8)$.

Then $\operatorname{sgn}(\alpha)=(-1)^{10-6}=(-1)^{4}=1$
VII) Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)\left(\begin{array}{cc}5 & 6\end{array}\right) \in S_{8}$. Then $\operatorname{sgn}(\alpha)=(-1)^{5}=-1$ Is the same as IV) since the number of transpositions are the same.
VIII) Let $\alpha=\left(\begin{array}{ccccc}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{cccc}5 & 6 & 7 & 8\end{array}\right) \in S_{8}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 1\end{array}\right)=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}\right)$ Then $\operatorname{sgn}(\alpha)=(-1)^{8-1}=(-1)^{7}=-1$

IX $)$ Let $\alpha=\left(\begin{array}{lll}1 & 5 & 9\end{array}\right)\left(\begin{array}{ccc}2 & 6 & 10\end{array}\right)\left(\begin{array}{l}4\end{array}\right) \in S_{12}=\left(\begin{array}{lll}1 & 5 & 9\end{array}\right)\left(\begin{array}{lll}2 & 6 & 10\end{array}\right)(4)(3)(7)(8)(11)(12)$ Then $\operatorname{sgn}(\alpha)=(-1)^{12-8}=(-1)^{4}=1$
2. Given $\alpha_{n} \in S_{n}$, by proposition 2.35 we can write it as a product of k transpositions, i.e.:

$$
\alpha=\left(\begin{array}{cc}
i_{1} & i_{2}
\end{array}\right)\left(\begin{array}{cc}
i_{3} & i_{4}
\end{array}\right) \cdots\left(\begin{array}{cc}
i_{r-1} & i_{r}
\end{array}\right)
$$

By proposition 2.27, the inverse of α is:

$$
\alpha^{-1}=\left(\begin{array}{cc}
i_{r} & i_{r-1}
\end{array}\right) \cdots\left(\begin{array}{cc}
i_{4} & i_{3}
\end{array}\right)\left(\begin{array}{cc}
i_{2} & i_{1}
\end{array}\right)
$$

Clearly, both α and α^{-1} have the same number of transpositions, i.e., both have k transposition. By definition 2 of sign, $\operatorname{sgn}(\alpha)=(-1)^{k}=\operatorname{sgn}\left(\alpha^{-1}\right)$
3. 2.23 Consider the complete factorizations of σ and σ^{\prime}.

$$
\sigma=\beta_{1} \beta_{2} \cdots \beta_{t}(j) \quad \text { and } \quad \sigma^{\prime}=\beta_{1} \beta_{2} \cdots \beta_{t}
$$

Where $t \in \mathbb{N}$. Since $\sigma \in S_{n}, \sigma^{\prime} \in S_{X}$ and $\left|S_{n}\right|=n,\left|S_{X}\right|=n-1$, by definition of sign we have that $\operatorname{sgn}(\sigma)=$ $(-1)^{n-(t+1)}=(-1)^{n-t-1}=(-1)^{(n-1)-t}=\operatorname{sgn}\left(\sigma^{\prime}\right)$
2.26 Let $\alpha=\left(\begin{array}{llll}i_{1} & i_{2} & \cdots & i_{r}\end{array}\right) \in S_{n}$ be an r-cycle.
(\Rightarrow) Assume that α is an even permutation. By definition, $\operatorname{sgn}(\alpha)=1=(-1)^{k}$ where k is an even number, i.e, $k=2 l$ where $l \in \mathbb{N}$. We also know that α can be written as the product of k transpositions:

$$
\alpha=\left(\begin{array}{ll}
i_{1} & i_{r}
\end{array}\right)\left(\begin{array}{ll}
i_{1} & i_{r-1}
\end{array}\right) \cdots\left(\begin{array}{ll}
i_{1} & i_{2}
\end{array}\right)
$$

Since we fix i_{1} for each transposition and vary i_{j} where $2 \leq j \leq r$, we can conclude that there are $r-1$ transpositions in the above decomposition. Hence, $r-1=k=2 l \Rightarrow r=2 l+1$, which means that r is an odd number.
(\Leftarrow) Let r be an odd number, i.e., $r=2 l-1$ where $l \in \mathbb{N}$. Again, we can write α as a product of transpositions:

$$
\alpha=\left(\begin{array}{ll}
i_{1} & i_{r}
\end{array}\right)\left(\begin{array}{ll}
i_{1} & i_{r-1}
\end{array}\right) \cdots\left(\begin{array}{ll}
i_{1} & i_{2}
\end{array}\right)
$$

There are $r-1=2 l-2$ transpositions. If we compute the sign of α we get: $\operatorname{sgn}(\alpha)=(-1)^{2 l-2}=(-1)^{2 l}(-1)^{-2}=$ 1 , which by definition means that α is an even permutation.
4.2 .36 i) False. $e(e(2,3), 4)=e(8,4)=8^{4}=4096 \neq e\left(2, e(3,4)=e(2,81)=2^{81}\right.$.
ii) False Consider the group $\left(S_{3}, \circ\right)$. Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right) \in S_{3}$ and $\beta=\left(\begin{array}{ll}2 & 3\end{array}\right) \in S_{3}$. Then $\alpha \beta=$ $\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \neq\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)=\beta \alpha$. Hence, $\left(S_{3}, \circ\right)$ is a non-abelian group which shows that not all groups are abelian.
iii) True, $\left(\mathbb{R}^{+}, \cdot\right)$ is a group since $\cdot: \mathbb{R}^{+} \times \mathbb{R}^{+}$is a binary associative operation. Also $1 \in \mathbb{R}^{+}$is the unity since $1 \cdot x=x \cdot 1=x$ and each element $x \in \mathbb{R}^{+}$has an inverse $x^{-1}=\frac{1}{x} \in \mathbb{R}^{+}$.
iv) False, since there is no identity element. The only element that works for identity is 0 since $0+x=x+0=x$ but $0 \notin \mathbb{R}^{+}$
2.37 Given elements $a_{1}, a_{2}, \ldots, a_{n}$ not necessarily distinct in a group G, we wish to prove that the inverse of $a_{1} \cdot a_{2} \cdots a_{n}$ is $a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{1}^{-1}$. By definition of inverse, we need to prove that $\left(a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{1}^{-1}\right) \cdot\left(a_{1} \cdot a_{2} \cdots a_{n}\right) \stackrel{?}{=} e$, where e is the unit of the group G. We prove this as follow:

$$
\begin{aligned}
\left(a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{1}^{-1}\right) \cdot\left(a_{1} \cdot a_{2} \cdots a_{n}\right) & =a_{n}^{-1} \cdots a_{2}^{-1} \cdot\left(a_{1}^{-1} \cdot a_{1}\right) \cdot a_{2} \cdots a_{n} \\
& =a_{n}^{-1} \cdots a_{2}^{-1} \cdot e \cdot a_{2} \cdots a_{n} \\
& =a_{n}^{-1} \cdots a_{2}^{-1} \cdot\left(e \cdot a_{2}\right) \cdots a_{n} \\
& =a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{2} \cdots a_{n}
\end{aligned}
$$

Associativity By definition of inverse

Associativity
$\vdots \quad$ Applying the above steps $n-2$ more times

$$
\begin{aligned}
& =a_{n}^{-1} \cdot a_{n} \\
& =e
\end{aligned}
$$

$\Rightarrow\left(a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{1}^{-1}\right) \cdot\left(a_{1} \cdot a_{2} \cdots a_{n}\right)=e$, which means that $\left(a_{n}^{-1} \cdots a_{2}^{-1} \cdot a_{1}^{-1}\right)$ is the inverse of $\left(a_{1} \cdot a_{2} \cdots a_{n}\right)$. By proposition 2.45 it follows that this same inverse works on the right as well.
2.38 (i) Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}4 & 3\end{array}\right)\left(\begin{array}{lllll}1 & 3 & 5 & 4 & 2\end{array}\right)\left(\begin{array}{ll}1 & 5\end{array}\right)\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4\end{array}\right)=$ $=\left(\begin{array}{lll}1 & 5 & 4\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right) \Rightarrow \operatorname{sgn}(\alpha)=(-1)^{5-2}=-1$, which means that α is an odd permutation. The order of α is the lcm of the lenght of its cycle in the complete factorization, i.e., $O(\alpha)=\operatorname{lcm}(2,3)=6$. The inverse is: $\alpha^{-1}=\left(\begin{array}{ll}3 & 2\end{array}\right)\left(\begin{array}{ccc}4 & 5 & 1\end{array}\right)$
(ii) For $2.22 \alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 9\end{array}\right)\left(\begin{array}{ll}8 & 2\end{array}\right)\left(\begin{array}{ll}3 & 7\end{array}\right)\left(\begin{array}{ll}4 & 6\end{array}\right)\left(\begin{array}{l}5\end{array}\right)$ and hence, the order is $\operatorname{lcm}(2,2,2,2,1)=2$.

For 2.28, we have that $f(0) \equiv 0(\bmod 11), f(1) \equiv 1(\bmod 11), f(2) \equiv 6(\bmod 11), f(3) \equiv 0(\bmod 9)$, $f(4) \equiv 5(\bmod 11), f(5) \equiv 0(\bmod 3), f(6) \equiv 10(\bmod 11), f(7) \equiv 0(\bmod 2), f(8) \equiv 8(\bmod 11), f(9) \equiv 4$ $(\bmod 11), f(10) \equiv 7(\bmod 11)$. We can write f as a permutation as follow:

$$
\left(\begin{array}{ccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
0 & 1 & 6 & 9 & 5 & 3 & 10 & 2 & 8 & 4 & 7
\end{array}\right)=\left(\begin{array}{cccc}
2 & 6 & 10 & 7
\end{array}\right)\left(\begin{array}{cccc}
3 & 9 & 4 & 5
\end{array}\right)
$$

Hence, the order of f is $l c m(4,4)=4$
2.39 (i) Since any permutation can be factored into disjoint r-cycles, it suffices to count them to get the total number of permutation of a particular order. In particular, to count the number of elements of order 2 we need only
to count every possible 2-cycle since ($\left.i_{1} i_{2}\right)^{2}=(1)$ or product of disjoint 2 cycles since disjoint cycles have the property $\left[\left(\begin{array}{ll}i_{1} & i_{r}\end{array}\right)\left(\begin{array}{ll}i_{1} & i_{r}\end{array}\right)\right]^{2}=\left(\begin{array}{ll}i_{1} & i_{r}\end{array}\right)^{2}\left(\begin{array}{ll}i_{1} & i_{r}\end{array}\right)^{2}=(1)(1)=(1)$, etc.

Hence, for S_{5} : there are $\frac{5 \cdot 4}{2}=10$ one 2 -cycles of, and $\frac{5 \cdot 4 \cdot 3 \cdot 2}{2 \cdot 2 \cot 2!}=\frac{120}{8}=15$ two 2 -cycles, so there are $10+15=25$ elements of order 2 in S_{5}.

For S_{6}, there are $\frac{6 \cdot 5}{2}=15$ one 2 -cycles, and $\frac{6 \cdot 5 \cdot 4 \cdot 3}{2 \cdot 2 \cdot 2!}=45$ two 2 -cycles, and $\frac{6!}{2 \cdot 2 \cdot 2 \cdot 3!}=15$ three 2 -cycles, so there are $15+15+45=75$ elements of order 2 in S_{6}.
(ii) Given S_{n}, the number of elements of order 2 in S_{n} is:

$$
\sum_{i=1}^{k} \frac{n!}{2^{i} \cdot i!\cdot(n-2 i)!}
$$

where $k \in \mathbb{N}$ is such that $n=2 k$ if n is even and $n=2 k+1$ if n is odd. Note that if $n=1$ then there are no 2-cycles.

