M403 Homework 11

Enrique Areyan

November 14, 2012
(2.21)
(i) False. Let $n=3$. Then $\left|S_{3}\right|=3$! $=6>3=n$.
(ii) True. We can write σ as a product of cycles. Then $n=l c m$ of the lengths of all cycles.
(iii) True. This is the standard notation of composition of permutations as product.
(iv) False. Let $\alpha=\left(\begin{array}{cc}3 & 4\end{array}\right) \in S_{4}$ and $\beta=\left(\begin{array}{ll}4 & 2\end{array}\right) \in S_{4}$. Then

$$
\alpha \beta=\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
4 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 3 & 4 & 2
\end{array}\right)
$$

Which is not the same as:

$$
\beta \alpha=\left(\begin{array}{ll}
4 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 3 & 2
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right)
$$

(v) False. Let α and β be as before. Both α and β are 2 -cycles. But:

$$
\beta \alpha=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 4 & 2 & 3
\end{array}\right)=\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)
$$

Which is a 3-cycle.
(vi) True. Consequence of proposition 2.33.
(x) False. Let $\sigma=\left(\begin{array}{cc}1 & 2\end{array}\right) \in S_{4}$. Then, $\sigma^{-1}=\left(\begin{array}{ll}2 & 1\end{array}\right) \in S_{4}$.

Let $\omega=\left(\begin{array}{ll}3 & 4\end{array}\right) \in S_{4}$. Then, $\omega^{-1}=\left(\begin{array}{ll}4 & 3\end{array}\right) \in S_{4}$. Let $\alpha=\left(\begin{array}{ll}3 & 4\end{array}\right) \in S_{4}$. Then $\sigma \neq \omega$, but

$$
\begin{aligned}
& \sigma \alpha \sigma^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 1 & 3 & 4
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)= \\
& \omega \alpha \omega^{-1}=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)=\left(\begin{array}{llll}
1 & 2 & 3 & 4 \\
1 & 2 & 4 & 3
\end{array}\right)
\end{aligned}
$$

(2.22) Let $\alpha=\left(\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 9\end{array}\right)\left(\begin{array}{ll}8 & 2\end{array}\right)\left(\begin{array}{ll}3 & 7\end{array}\right)\left(\begin{array}{ll}4 & 6\end{array}\right)\left(\begin{array}{l}5\end{array}\right)$. The inverse is: $\alpha^{-1}=\left(\begin{array}{l}5\end{array}\right)\left(\begin{array}{ll}6 & 4\end{array}\right)\left(\begin{array}{ll}7 & 3\end{array}\right)\left(\begin{array}{ll}2 & 8\end{array}\right)\left(\begin{array}{ll}1 & 9\end{array}\right)$. We can verify this:

$$
\alpha \alpha^{-1}=\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)\left(\begin{array}{ccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1
\end{array}\right)=\left(\begin{array}{lllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9
\end{array}\right)
$$

(2.24) (i) Let $1<r \leq n$. An r-cycle is of the form $(\sigma(1) \sigma(2) \cdots \sigma(r))$. There are n choices for $\sigma(1)$, $\mathrm{n}-1$ choices for $\sigma(2), \ldots$, and finally $n-r+1$ choices for $\sigma(r)$. By the rule of product, there are $n(n-1) \cdots(n-r+1)$ total choices. However, we regard circular orders as being the same so we must divide this expression by r, i.e., $[n(n-1) \cdots(n-r+1)] \frac{1}{r}$ is the total number of r-cycles in S_{n}.
(ii) The proof is by induction. Consider the following statement $S(k)$: the number of permutations $\alpha \in S_{n}$, where α is a product of k disjoint r-cycles is $\frac{1}{k!} \frac{1}{r^{k}}[n(n-1) \cdots(n-r+1)]$.

Base Case: $S(1)$ is true since we proved it in (i).
Inductive Step: Assume $S(k-1)$ is true. We want to show that $S(k)$ is true. Let $\alpha \in S_{n}$ be a product of \bar{k} disjoint r-cycles. Then, we can write alpha as $\alpha=\sigma \beta$, where σ is a product of $k-1$ disjoint cycles and β is an r-cycle. Then, we have $n-r(k-1)$ choices for β, but we need to divide by k to account for linear combinations. Hence, the total number of permutations of products of k disjoint r-cycles is:

$$
\frac{1}{k} \frac{1}{r}\left(\frac{(n-r(k-1)!}{(n-k r)!}\right) \frac{1}{(k-1)!} \frac{1}{r^{k-1}} \frac{n!}{(n-(k-1) r)!}=S(k)
$$

(2.25) (i) Let α be an r-cycle. Then:

$$
\begin{aligned}
& \alpha=\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right) \quad \text { By definition } \\
& \alpha^{r}=\left[\begin{array}{llll}
\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right)
\end{array}\right]^{r} \\
& =\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right) \cdots\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right)\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right) \\
& \text { Raising } \alpha \text { to the r power. } \\
& \text { By definition of exponentiation. } \\
& \left.=\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right) \cdots\left(\begin{array}{cccc}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right)\left[\begin{array}{llll}
i_{r} & i_{1} & \cdots & i_{r-1}
\end{array}\right)\right] \quad \text { Operating the last two terms } \\
& \vdots \\
& =\left(\begin{array}{llll}
i_{1} & i_{2} & \cdots & i_{r}
\end{array}\right)\left(\begin{array}{llll}
i_{r} & i_{r-1} & \cdots & i_{1}
\end{array}\right) \\
& =(1) \\
& \text { Operating } r-1 \text { terms } \\
& \text { By definition of inverse }
\end{aligned}
$$

(ii) It follows from the previous proof that if α is an r-cycle, any positive integer $k<r$ is such that $\alpha^{k} \neq(1)$ and $\alpha^{r}=(1)$. Hence, r is the least positive integer such that $\alpha^{r}=(1)$
(2.33) Let $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right), \beta=\left(\begin{array}{cc}3 & 4\end{array}\right), \gamma=\left(\begin{array}{cc}3 & 5\end{array}\right) \in S_{5}$ none of which is the identity and, since α and β, and α and γ are disjoints transpositions, we have that:

$$
\begin{aligned}
& \alpha \beta=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\beta \alpha \\
& \alpha \gamma=\left(\begin{array}{ll}
1 & 2
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2
\end{array}\right)=\beta \alpha
\end{aligned}
$$

But,

$$
\begin{gathered}
\beta \gamma=\left(\begin{array}{ll}
3 & 4
\end{array}\right)\left(\begin{array}{ll}
3 & 5
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 4 & 3 & 5
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 5 & 4 & 3
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 5 & 3 & 4
\end{array}\right) \neq \\
\gamma \beta=\left(\begin{array}{ll}
3 & 5
\end{array}\right)\left(\begin{array}{ll}
3 & 4
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 5 & 4 & 3
\end{array}\right)\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 4 & 3 & 5
\end{array}\right)=\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
1 & 2 & 4 & 5 & 3
\end{array}\right)
\end{gathered}
$$

 In double-row notation: $\alpha^{-1}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 8 & 7 & 1 & 2 & 4 & 3\end{array}\right)$
II) $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 1 & 2 & 8 & 7 & 5 & 4 & 6\end{array}\right)=\left(\begin{array}{lll}1 & 3 & 2\end{array}\right)\left(\begin{array}{ccccc}4 & 8 & 6 & 5 & 7\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{lllll}7 & 5 & 6 & 8 & 4\end{array}\right)\left(\begin{array}{lll}2 & 3 & 1\end{array}\right)$. In double-row notation: $\alpha^{-1}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 1 & 7 & 6 & 8 & 5 & 4\end{array}\right)$
III) $\alpha=\left(\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 4 & 2 & 5 & 6 & 7 & 8 & 1\end{array}\right)=\left(\begin{array}{cccccccc}1 & 3 & 2 & 4 & 5 & 6 & 7 & 8\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{llllllll}8 & 7 & 6 & 5 & 4 & 2 & 3 & 1\end{array}\right)$. In double-row notation: $\alpha^{-1}=\left(\begin{array}{cccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 3 & 1 & 2 & 4 & 5 & 6 & 7\end{array}\right)$
IV) $\alpha=\left(\begin{array}{ll}1 & 2\end{array}\right)\left(\begin{array}{ll}2 & 3\end{array}\right)\left(\begin{array}{ll}3 & 4\end{array}\right)\left(\begin{array}{ll}4 & 5\end{array}\right)\left(\begin{array}{cc}5 & 6\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{ll}6 & 5\end{array}\right)\left(\begin{array}{ll}5 & 4\end{array}\right)\left(\begin{array}{ll}4 & 3\end{array}\right)\left(\begin{array}{ll}3 & 2\end{array}\right)\left(\begin{array}{ll}2 & 1\end{array}\right)$
$\alpha=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 3 & 4 & 5 & 6 & 1 & 7 & 8 & 9 & 10\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 6 & 1 & 2 & 3 & 4 & 5 & 7 & 8 & 9 & 10\end{array}\right)$
$\mathrm{V}) \alpha=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}\right)\left(\begin{array}{cccc}5 & 6 & 7 & 8\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{cccc}8 & 7 & 6 & 5\end{array}\right)\left(\begin{array}{ccccc}5 & 4 & 3 & 2 & 1\end{array}\right)$

$$
\alpha=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 3 & 4 & 5 & 6 & 7 & 8 & 1 & 9 & 10
\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{cccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
8 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 9 & 10
\end{array}\right)
$$

VI) $\alpha=\left(\begin{array}{lll}1 & 5 & 9\end{array}\right)\left(\begin{array}{ccc}2 & 6 & 10\end{array}\right)(4) \Rightarrow \alpha^{-1}=(4)\left(\begin{array}{ccc}10 & 6 & 2\end{array}\right)\left(\begin{array}{lll}9 & 5 & 1\end{array}\right)$
$\alpha=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 5 & 6 & 3 & 4 & 9 & 10 & 7 & 8 & 1 & 2\end{array}\right) \Rightarrow \alpha^{-1}=\left(\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 9 & 10 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6\end{array}\right)$

