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(2.21) (i) False. Let n = 3. Then |S3| = 3! = 6 > 3 = n.

(ii) True. We can write σ as a product of cycles. Then n = lcm of the lengths of all cycles.

(iii) True. This is the standard notation of composition of permutations as product.

(iv) False. Let α =
(
3 4

)
∈ S4 and β =

(
4 2

)
∈ S4. Then

αβ =
(
3 4

) (
4 2

)
=

(
1 2 3 4
1 2 4 3

)(
1 2 3 4
1 4 3 2

)
=

(
1 2 3 4
1 3 4 2

)
Which is not the same as:

βα =
(
4 2

) (
3 4

)
=

(
1 2 3 4
1 4 3 2

)(
1 2 3 4
1 2 4 3

)
=

(
1 2 3 4
1 4 2 3

)
(v) False. Let α and β be as before. Both α and β are 2-cycles. But:

βα =

(
1 2 3 4
1 4 2 3

)
=

(
2 3 4

)
Which is a 3-cycle.

(vi) True. Consequence of proposition 2.33.

(x) False. Let σ =
(
1 2

)
∈ S4. Then, σ−1 =

(
2 1

)
∈ S4.

Let ω =
(
3 4

)
∈ S4. Then, ω−1 =

(
4 3

)
∈ S4. Let α =

(
3 4

)
∈ S4. Then σ 6= ω, but

σασ−1 =

(
1 2 3 4
2 1 3 4

)(
1 2 3 4
1 2 4 3

)(
1 2 3 4
2 1 3 4

)
=

(
1 2 3 4
1 2 4 3

)
=

ωαω−1 =

(
1 2 3 4
1 2 4 3

)(
1 2 3 4
1 2 4 3

)(
1 2 3 4
1 2 4 3

)
=

(
1 2 3 4
1 2 4 3

)

(2.22) Let α =

(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
=

(
1 9

) (
8 2

) (
3 7

) (
4 6

) (
5

)
. The inverse is:

α−1 =
(
5
) (

6 4
) (

7 3
) (

2 8
) (

1 9
)
. We can verify this:

αα−1 =

(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)(
1 2 3 4 5 6 7 8 9
9 8 7 6 5 4 3 2 1

)
=

(
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

)
(2.24) (i) Let 1 < r ≤ n. An r-cycle is of the form (σ(1) σ(2) · · · σ(r)). There are n choices for σ(1), n-1 choices for

σ(2),..., and finally n − r + 1 choices for σ(r). By the rule of product, there are n(n − 1) · · · (n − r + 1) total
choices. However, we regard circular orders as being the same so we must divide this expression by r, i.e.,
[n(n− 1) · · · (n− r + 1)] 1r is the total number of r-cycles in Sn.

(ii) The proof is by induction. Consider the following statement S(k) : the number of permutations α ∈ Sn, where
α is a product of k disjoint r-cycles is 1

k!
1
rk
[n(n− 1) · · · (n− r + 1)].

Base Case: S(1) is true since we proved it in (i).

Inductive Step: Assume S(k − 1) is true. We want to show that S(k) is true. Let α ∈ Sn be a product of
k disjoint r−cycles. Then, we can write alpha as α = σβ, where σ is a product of k − 1 disjoint cycles and
β is an r−cycle. Then, we have n − r(k − 1) choices for β, but we need to divide by k to account for linear
combinations. Hence, the total number of permutations of products of k disjoint r-cycles is:

1

k

1

r

(
(n− r(k − 1)!

(n− kr)!

)
1

(k − 1)!

1

rk−1

n!

(n− (k − 1)r)!
= S(k)

1



(2.25) (i) Let α be an r-cycle. Then:

α =
(
i1 i2 · · · ir

)
By definition

αr = [
(
i1 i2 · · · ir

)
]r Raising α to the r power.

=
(
i1 i2 · · · ir

)
· · ·

(
i1 i2 · · · ir

) (
i1 i2 · · · ir

)
By definition of exponentiation.

=
(
i1 i2 · · · ir

)
· · ·

(
i1 i2 · · · ir

)
[
(
ir i1 · · · ir−1

)
] Operating the last two terms

...
=

(
i1 i2 · · · ir

) (
ir ir−1 · · · i1

)
Operating r − 1 terms

= (1) By definition of inverse

(ii) It follows from the previous proof that if α is an r-cycle, any positive integer k < r is such that αk 6= (1) and
αr = (1). Hence, r is the least positive integer such that αr = (1)

(2.33) Let α =
(
1 2

)
, β =

(
3 4

)
, γ =

(
3 5

)
∈ S5 none of which is the identity and, since α and β, and α and γ

are disjoints transpositions, we have that:

αβ =
(
1 2

) (
3 4

)
=

(
3 4

) (
1 2

)
= βα

αγ =
(
1 2

) (
3 4

)
=

(
3 4

) (
1 2

)
= βα

But,

βγ =
(
3 4

) (
3 5

)
=

(
1 2 3 4 5
1 2 4 3 5

)(
1 2 3 4 5
1 2 5 4 3

)
=

(
1 2 3 4 5
1 2 5 3 4

)
6=

γβ =
(
3 5

) (
3 4

)
=

(
1 2 3 4 5
1 2 5 4 3

)(
1 2 3 4 5
1 2 4 3 5

)
=

(
1 2 3 4 5
1 2 4 5 3

)

I) α =

(
1 2 3 4 5 6 7 8
5 6 8 7 2 1 4 3

)
=

(
1 5 2 6

) (
3 8

) (
4 7

)
⇒ α−1 =

(
7 4

) (
8 3

) (
6 2 5 1

)
.

In double-row notation: α−1 =

(
1 2 3 4 5 6 7 8
6 5 8 7 1 2 4 3

)

II) α =

(
1 2 3 4 5 6 7 8
3 1 2 8 7 5 4 6

)
=

(
1 3 2

) (
4 8 6 5 7

)
⇒ α−1 =

(
7 5 6 8 4

) (
2 3 1

)
.

In double-row notation: α−1 =

(
1 2 3 4 5 6 7 8
2 3 1 7 6 8 5 4

)

III) α =

(
1 2 3 4 5 6 7 8
3 4 2 5 6 7 8 1

)
=

(
1 3 2 4 5 6 7 8

)
⇒ α−1 =

(
8 7 6 5 4 2 3 1

)
.

In double-row notation: α−1 =

(
1 2 3 4 5 6 7 8
8 3 1 2 4 5 6 7

)
IV) α =

(
1 2

) (
2 3

) (
3 4

) (
4 5

) (
5 6

)
⇒ α−1 =

(
6 5

) (
5 4

) (
4 3

) (
3 2

) (
2 1

)
α =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 1 7 8 9 10

)
⇒ α−1 =

(
1 2 3 4 5 6 7 8 9 10
6 1 2 3 4 5 7 8 9 10

)
V) α =

(
1 2 3 4 5

) (
5 6 7 8

)
⇒ α−1 =

(
8 7 6 5

) (
5 4 3 2 1

)
α =

(
1 2 3 4 5 6 7 8 9 10
2 3 4 5 6 7 8 1 9 10

)
⇒ α−1 =

(
1 2 3 4 5 6 7 8 9 10
8 1 2 3 4 5 6 7 9 10

)
VI) α =

(
1 5 9

) (
2 6 10

) (
4
)
⇒ α−1 =

(
4
) (

10 6 2
) (

9 5 1
)

α =

(
1 2 3 4 5 6 7 8 9 10
5 6 3 4 9 10 7 8 1 2

)
⇒ α−1 =

(
1 2 3 4 5 6 7 8 9 10
9 10 3 4 1 2 7 8 5 6

)

2


