M403 Homework 1

Enrique Areyan
 August 29, 2012

(i) True. Let C be an arbitrary nonempty set of negative integers. Define a new set D as follow:

$$
D=\{d: d=-c \text { for some } c \in C\}
$$

By definition, D contains the additive inverses of C, hence $D \subseteq \mathbb{N}$ and $D \neq \emptyset$. Now, by the Least Integer Axiom, D has a smallest integer, call it n. Take $-n$ to obtain the largest integer in C.
(ii) True. $83,84,85,86, \ldots, 95$. This sequence has 13 consecutive natural numbers and only 83 and 89 are prime.
(iii) False. $401,402,403, \ldots, 407$. This sequence has 7 consecutive natural numbers and only 401 is prime.
(iv) True. Let $C=\{l \in \mathbb{N}: l$ is the length of a sequence of consecutive natural numbers not containing 2 primes $\}$. Lengths here refer to the number of numbers in the sequence and hence, these are all natural numbers $(C \subseteq \mathbb{N}$). Also, $C \neq$ set (see (iii) above). Now, by the Least Integer Axiom, C has a smallest integer which correspond to the sequence of shortest length. Note that there may be more than one sequence of shortest length, but at least there is one.
(v) True. Using proposition 1.3 , and the fact that $8<\sqrt{79}<9$, we need to check that 79 is not divisible by any prime between 2 and 8 , i.e., $2,3,5,7$. Check: $\frac{79}{2}=39,5 ; \frac{79}{3}=26,333 \ldots ; \frac{79}{5}=15,8 ; \frac{79}{7}=11,2857143$.
(vi) True. Let $S(n): n$ is an even number.
(vii) False. If $n=2$, then $F_{2}=F_{1}+F_{0}=1+0=1$. Thus, $2=n>F_{2}=1$
(viii) False. Let $m=2$ and $n=3$. Then $(m \cdot n)!=(2 \cdot 3)!=6$!, but $2!3!=2 \cdot 6=12<6$!
(i) For any $n \geq 0$ and any $r \neq 1$, prove that $1+r+r^{2}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$

Proof by induction: $S(n): 1+r+r^{2}+\ldots+r^{n}=\frac{1-r^{n+1}}{1-r}$
Base Case: $S(0): r^{0}=1=\frac{1-r^{0+1}}{1-r}=\frac{1-r}{1-r}=1 \Rightarrow S(0)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e., $1+r+r^{2}+\ldots+r^{n}+r^{n+1} \stackrel{?}{=} \frac{1-r^{(n+1)+1}}{1-r}$. We begin as follow:

$$
\begin{array}{rlcr}
1+r+r^{2}+\ldots+r^{n}+r^{n+1} & = & \frac{1-r^{n+1}}{-r}+r^{n+1} & \text { By inductive hypothesis } \\
=\frac{1-r^{n+1}+\left(r^{n+1}\right)(1-r)}{1-r} & = & \frac{1-r^{n+1}+r^{n+1}-r^{n+2}}{1-r} & \text { Summing fraction \& Collecting terms } \\
=\frac{1-r^{n+2}}{1-r} & = & \frac{1-r^{n+1}+1}{1-r} & \text { Exponent rule }
\end{array}
$$

$\Longrightarrow S(n+1)$ is true.
(ii) Prove that $1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$

Proof by induction: $S(n): 1+2+2^{2}+\ldots+2^{n}=2^{n+1}-1$
Base Case: $S(0): 2^{0}=1=2^{0+1}-1=2-1=1 \Rightarrow S(0)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e., $1+2+2^{2}+\ldots+2^{n}+2^{n+1} \stackrel{?}{=} 2^{(n+1)+1}-1$. We begin as follow:

$$
\begin{array}{rlrr}
1+2+2^{2}+\ldots+2^{n}+2^{n+1} & =2^{n+1}-1+2^{n+1} & \text { By inductive hypothesis } \\
& =2\left(2^{n+1}\right)-1 & \text { Collecting terms } \\
& =2^{(n+1)+1}-1 & \text { Exponent rule }
\end{array}
$$

$\Longrightarrow S(n+1)$ is true.
(1.3) Show, for all $n \geq 1$, that 10^{n} leaves remainder of 1 after dividing by 9 . (Note that we can formulate this as $10^{n}=9 p_{n}+1$, where p_{n} is an integer)

Proof by induction: $S(n): 10^{n}=9 p_{n}+1$
Base Case: $S(1): 10^{1}=9 \cdot 1+1 \Rightarrow S(1)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e., $10^{n+1} \stackrel{?}{=} 9 q_{n}+1$, for some integer q_{n}. We begin as follow:

$$
\begin{array}{rlr}
10^{n+1} & =10\left(10^{n}\right) & \text { Exponent rule } \\
& =10\left(9 p_{n}+1\right) & \text { Inductive hypothesis } \\
& =90 p_{n}+10 & \text { Distribution over integers } \\
& =90 p_{n}+9+1 & \text { Since } 10=9+1 \\
& =9\left(10 p_{n}+1\right)+1 & \text { Distribution over integers } \\
& =9 q_{n}+1 & \text { where } q_{n}=\left(10 p_{n}+1\right) \text { an integer }
\end{array}
$$

$\Longrightarrow S(n+1)$ is true.
(1.5) Prove that $1^{2}+2^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$

Proof by induction: $S(n): 1^{2}+2^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{3} n^{3}+\frac{1}{2} n^{2}+\frac{1}{6} n$
Base Case: $S(1): 1=1^{2}=\frac{1}{6} 1 \cdot 2 \cdot 3=\frac{6}{6}=\frac{1}{3} 1^{3}+\frac{1}{2} 1^{2}+\frac{1}{6} 1 \Rightarrow S(1)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e.,

$$
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} \stackrel{?}{=} \frac{1}{6}(n+1)(n+2)(2 n+3)
$$

We begin as follow:

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+n^{2}+(n+1)^{2} & =\frac{1}{6} n(n+1)(2 n+1)+(n+1)^{2} & & \text { Inductive Hypothesis } \\
& =\frac{n(n+1)(2 n+1)+6(n+1)^{2}}{6} & & \text { Summing fraction } \\
& =\frac{\left(n^{2}+n\right)(2 n+1)+6 n^{2}+12 n+6}{6} & & \text { Elementary arithmetic } \\
& =\frac{2 n^{3}+n^{2}+2 n^{2}+n+6 n^{2}+12 n+6}{6} & & \text { Elementary arithmetic } \\
& =\frac{2 n^{3}+9 n^{2}+13 n+6}{6} & & \text { Elementary arithmetic } \\
& =\frac{1}{6}(n+1)(n+2)(2 n+3) & & \text { Distributive law }
\end{aligned}
$$

$\Longrightarrow S(n+1)$ is true.
(1.6) Prove that $1^{3}+2^{3}+\ldots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$

Proof by induction: $S(n): 1^{3}+2^{3}+\ldots+n^{3}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$
Base Case: $S(1): 1=1^{3}=\frac{1}{4} 1^{4}+\frac{1}{2} 1^{3}+\frac{1}{4} 1^{2}=\frac{1}{4}+\frac{1}{2}+\frac{1}{4}=\frac{1}{2}+\frac{1}{2}=1 \Rightarrow S(1)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e.,

$$
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3} \stackrel{?}{=} \frac{1}{4}(n+1)^{4}+\frac{1}{2}(n+1)^{3}+\frac{1}{4}(n+1)^{2}
$$

To make matters simpler, we can expand the right hand side of this equation to obtain a simpler expression:

$$
\begin{aligned}
& \frac{1}{4}(n+1)^{4}+\frac{1}{2}(n+1)^{3}+\frac{1}{4}(n+1)^{2}=\frac{1}{4}\left(n^{2}+2 n+1\right)^{2}+\frac{1}{2}\left((n+1)\left(n^{2}+2 n+1\right)\right)+\frac{1}{4}\left(n^{2}+2 n+1\right) \\
& =\frac{1}{4}\left(n^{4}+2 n^{3}+n^{2}+2 n^{3}+4 n^{2}+2 n+n^{2}+2 n+1\right)+\frac{1}{2}\left(n^{3}+2 n^{2}+n+n^{2}+2 n+1\right)+\frac{1}{4}\left(n^{2}+2 n+1\right) \\
& =\quad \frac{1}{4} n^{4}+n^{3}\left(1+\frac{1}{2}\right)+n^{2}\left(\frac{6}{4}+\frac{3}{2}+\frac{1}{4}\right)+n\left(1+\frac{3}{2}+\frac{1}{2}\right)+\frac{1}{4}+\frac{1}{2}+\frac{1}{4} \\
& =\frac{1}{4} n^{4}+\frac{3}{2} n^{3}+\frac{13}{4} n^{2}+3 n+1
\end{aligned}
$$

Now we begin the inductive step as follow:

$$
\begin{aligned}
1^{3}+2^{3}+\ldots+n^{3}+(n+1)^{3} & =\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}+(n+1)^{3} \\
& =\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}+n^{3}+3 n^{2}+3 n+1 \\
& =\frac{1}{4} n^{4}+n^{3}\left(\frac{1}{2}+1\right)+n^{2}\left(\frac{1}{4}+3\right)+3 n+1 \\
& =\frac{1}{4} n^{4}+\frac{3}{2} n^{3}+\frac{13}{4} n^{2}+3 n+1
\end{aligned}
$$

Collecting terms
Elementary arithmetic
$\Longrightarrow S(n+1)$ is true.
(1.8) The guess for the formula is $1+3+5+\ldots+(2 n-1)=n^{2}, n \geq 1$

Proof by induction: $S(n): 1+3+5+\ldots+(2 n-1)=n^{2}$
Base Case: $S(1): 1=1^{2} \Rightarrow S(1)$ is true.
Inductive Step: Assume that $S(n)$ is true. We want to show that $S(n+1)$ is true, i.e.,

$$
1+3+5+\ldots+(2 n-1)+(2 n+1) \stackrel{?}{=}(n+1)^{2}
$$

We begin as follow:

$$
\begin{array}{rlr}
1+3+5+\ldots+(2 n-1)+(2 n+1) & =n^{2}+(2 n+1) & \text { Inductive Hypothesis } \\
& =n^{2}+2 n+1 & \text { Associativity } \\
& =(n+1)^{2} & \text { Completing square }
\end{array}
$$

$\Longrightarrow S(n+1)$ is true.
(1.18) Prove that $F_{n}<2^{n}$ for all $n \geq 0$, where $F_{0}, F_{1}, F_{2}, \ldots$ is the Fibonaccci sequence

Proof by induction: $F_{n}<2^{n}$
Base Case: $S(0)$: $F_{0}=0<1=2^{0} \Rightarrow S(0)$ is true. Also, $S(1): F_{1}=1<2=2^{1} \Rightarrow S(1)$ is true.
Inductive Step: Assume that $S(k)$ is true for $k<n$ (second form of induction). We want to show that $\overline{S(n) \text { is true, i.e., }}$

$$
F_{n} \stackrel{?}{<} 2^{n}
$$

We begin as follow, if $n \geq 2$:

$$
\begin{array}{rlr}
F_{n}=F_{n-1}+F_{n-2} & <2^{n-1}+2^{n-2} & \text { Inductive Hypothesis } \\
& =2\left(2^{n-2}\right)+2^{n-2} & \text { Exponent rule } \\
& =3\left(2^{n-2}\right) & \\
& <4\left(2^{n-2}\right) & \\
& =2^{2}\left(2^{n-2}\right) & \\
& =2^{n} & \text { Exponent rule }
\end{array}
$$

$\Longrightarrow S(n)$ is true.

