# Linear Algebra <br> Final Test <br> 2008.1.15. 

1. $(12 \%)$ Let $V, W$ be vector spaces, $T: V \rightarrow W$ be linear, and let $U: V \rightarrow W$ be a function. Give the definitions of the followings.
(a) $(3 \%) U$ is linear.
(b) $(3 \%) N(T)$.
(c) $(3 \%) R(T)$.
(d) $(3 \%) V \cong(V$ is isomorphic to $W)$.
2. $(40 \%)$ Determine (by proof or counterexample) the truth or falsity of the following statements. (Note: you need to explain why the example you give is a counterexample if the statement is false.)
(a) $(5 \%)$ Given $x_{1}, x_{2} \in V$ and $y_{1}, y_{2} \in W$, there exists a linear transformation $T: V \rightarrow W$ such that $T\left(x_{1}\right)=y_{1}$ and $T\left(x_{2}\right)=y_{2}$.
(b) $(5 \%)$ Let $V, W$ be vector spaces, if $T: V \rightarrow W, U: V \rightarrow W$ are two linear transformations such that $N(T)=N(U), R(T)=R(U)$, then $T=U$.
(c) $(5 \%)$ There does not exist linear transformation $T: V \rightarrow W$ such that $N(T)=R(T)$.
(d) $(5 \%)$ If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is linear and $T(1,1)=(1,0,2)$ and $T(2,3)=$ $(1,-1,4)$, then $T(8,11)=(5,-3,16)$.
(e) $(5 \%)$ Let $A \in M_{n \times n}(\mathbb{R})$, if $A^{2}=I_{n}$, then $A=I_{n}$ or $A=-I_{n}$.
(f) $(5 \%)$ Let $V$ be a vector space and $T: V \rightarrow W$ be linear, then $T^{2}=T_{0}$ if and only if $R(T) \subseteq N(T)$ ( $T_{0}$ is the zero transformation from $V$ to V).
(g) $(5 \%)$ Let $A \in M_{n \times n}(\mathbb{R})$, if $A^{2}=O$, then $A=O$ ( $O$ is the zero matrix).
(h) $(5 \%)$ Let $A, B \in M_{n \times n}(R)$, if $A B=O$, then $B A=O$ ( $O$ is the zero matrix).
3. $(30 \%)$ Let $V, W$ be vector spaces and $T: V \rightarrow W$ be linear.
(a) (5\%) Prove that $N(T)$ and $R(T)$ are subspaces of $V$ and $W$, respectively.
(b) (5\%) Prove that if $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for $V$, then

$$
R(T)=\operatorname{span}(T(\beta))=\operatorname{span}\left(\left\{T\left(v_{1}\right), T\left(v_{2}\right), \cdots, T\left(v_{n}\right)\right\}\right)
$$

(c) $(10 \%)$ Prove that if $V$ is finite-dimensional, then

$$
\operatorname{nullity}(T)+\operatorname{rank}(T)=\operatorname{dim}(V)
$$

(d) $(5 \%)$ Prove that $T$ is one-to-one if and only if $N(T)=\{0\}$.
(e) $(5 \%)$ Prove that if $\beta=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is a basis for $V$, then for $w_{1}, w_{2}, \cdots, w_{n} \in W$, there exists exactly one linear transformation $U: V \rightarrow W$ such that $U\left(v_{i}\right)=w_{i}$ for $i=1,2, \cdots n$.
4. $(10 \%)$
(a) $(6 \%)$ Let $T: P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by

$$
T(f)=\left(\begin{array}{cc}
f(1)-f(2) & 0 \\
0 & f(0)
\end{array}\right)
$$

find $N(T), R(T)$, nullity $(T)$ and $\operatorname{rank}(T)$.
(b) $(4 \%)$ Let $T: M_{n \times n}(\mathbb{R}) \rightarrow \mathbb{R}$ be a linear transformation defined by $T(A)=\operatorname{tr}(A)$, find nullity $(T)$ and $\operatorname{rank}(T)(\operatorname{tr}(A)$ is the trace of $A)$.
5. $(25 \%)$
(a) $(8 \%)$ Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T\left(a_{1}, a_{2}\right)=$ ( $a_{1}-a_{2}, a_{1}, 2 a_{1}+a_{2}$ ), $\beta$ be the standard ordered basis for $\mathbb{R}^{2}, \alpha=$ $\{(1,2),(2,3)\}$, and $\gamma=\{(1,1,0),(0,1,1),(2,2,3)\}$. Find $[T]_{\beta}^{\gamma}$ and $[T]_{\alpha}^{\gamma}$.
(b) $(5 \%)$ Let $\beta=\left\{1, x, x^{2}\right\}$ and $\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$
be the ordered bases for $P_{2}(\mathbb{R})$ and $M_{2 \times 2}(\mathbb{R})$, respectively, and $T$ : $P_{2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by $T(f)=$ $\left(\begin{array}{cc}f^{\prime}(0) & 2 f(1) \\ 0 & f^{\prime \prime}(3)\end{array}\right)$. Compute $[T]_{\beta}^{\gamma}$.
(c) $(7 \%)$ Let $\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be the ordered bases for $M_{2 \times 2}(\mathbb{R})$, and $T: M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by $T(A)=A^{t}$. Find $[T]_{\gamma}$ and $[T(B)]_{\gamma}$, where $B=\left(\begin{array}{cc}1 & 4 \\ -1 & 6\end{array}\right)$.
(d) $(5 \%)$ Let $g(x)=3+x, T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ and $U: P_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{3}$ be linear transformations defined by $T(f(x))=f^{\prime}(x) g(x)+2 f(x)$ and $U\left(a+b x+c x^{2}\right)=(a+b, c, a-b)$, respectively, and let $\beta$ and $\gamma$ be the standard ordered bases for $P_{2}(\mathbb{R})$ and $\mathbb{R}^{3}$, respectively. Find $[U T]_{\beta}^{\gamma}$.
6. (15\%) Let $V, W$ be vector spaces over $F$ and $T: V \rightarrow W$ be linear.
(a) (5\%) Prove that if $U: V \rightarrow W$ is linear and $a \in F$, then $a T+U$ is linear.
(b) (5\%) Prove that if $U: W \rightarrow Z$ is linear, then $U T: V \rightarrow Z$ is linear.
(c) $(5 \%)$ Prove that if $T$ is invertible, then $T^{-1}: W \rightarrow V$ is linear.
7. (15\%)
(a) $(5 \%)$ Let $V$ be a finite-dimensional vector space having ordered basis $\beta$, and $u_{1}, u_{2}, \cdots, u_{n} \in V$. Prove that $\left[u_{1}+u_{2}+\cdots+u_{n}\right]_{\beta}=\left[u_{1}\right]_{\beta}+$ $\left[u_{2}\right]_{\beta}+\cdots+\left[u_{n}\right]_{\beta}$. (Hint: First show that $\left.\left[u_{1}+u_{2}\right]_{\beta}=\left[u_{1}\right]_{\beta}+\left[u_{2}\right]_{\beta}\right)$.
(b) $(10 \%)$ Let $V, W$ be finite-dimensional vector spaces having ordered bases $\beta$ and $\gamma$, respectively, and let $T: V \rightarrow W$ be linear. Prove that for each $u \in V$, we have $[T(u)]_{\gamma}=[T]_{\beta}^{\gamma}[u]_{\beta}$.
8. $(15 \%)$
(a) $(5 \%)$ Let $V$ and $W$ be finite-dimensional vector spaces over $F$, and let $T: V \rightarrow W$ be linear. Prove that if $T$ is invertible, then $\operatorname{dim}(V)=$ $\operatorname{dim}(W)$.
(b) $(5 \%)$ Let $V$ and $W$ be vector spaces of equal (finite) dimension, and let $T: V \rightarrow W$ be linear. Prove that the following conditions are equivalent.
i. $T$ is invertible
ii. $T$ is one-to-one
iii. $T$ is onto
(c) $(5 \%)$ Let $V$ and $W$ be finite-dimensional vector spaces over $F$. Prove that $V$ is isomorphic to $W$ if and only if $\operatorname{dim}(V)=\operatorname{dim}(W)$.
9. $(10 \%)$
(a) (4\%) Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T\left(a_{1}, a_{2}, a_{3}\right)=$ $\left(3 a_{1}-2 a_{3}, a_{2}, 3 a_{1}+4 a_{2}\right)$. Show that $T$ is invertible.
(b) $(6 \%)$ Let

$$
V=\left\{\left(\begin{array}{cc}
a & a+b \\
0 & c
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

Construct an isomorphism from $V$ to $\mathbb{R}^{3}$. (You need to show that the function you construct is indeed an isomorphism).
10. (30\%)
(a) (5\%) Let $V, W$ be vector spaces, and $T: V \rightarrow W$ be linear. Suppose that $T$ is one-to-one and $S$ is a subset of $V$. Prove that if $S$ is linearly independent, then $T(S)$ is linearly independent.
(b) $(5 \%)$ Let $V, W$ be vector spaces, $S$ be a subset of $V$, and $T: V \rightarrow W$ be linear. Prove that if $T(S)$ is linearly independent, then $S$ is linearly independent.
(c) $(6 \%)$ Let $V, W$ be finite-dimensional vector spaces, $\beta$ be an ordered basis for $V$, and $T: V \rightarrow W$ be linear. Prove that $T$ is an isomorphism if and only if $T(\beta)$ is a basis for $W$.
(d) $(7 \%)$ Let $V, W$ be finite-dimensional vector spaces and $T: V \rightarrow W$ be an isomorphism. Prove that for any subspace $V_{0}$ of $V, T\left(V_{0}\right)$ is a subspace of $W$, and $\operatorname{dim}\left(V_{0}\right)=\operatorname{dim}\left(T\left(V_{0}\right)\right)$.
(e) (7\%) Let $T: V \rightarrow W$ be a linear transformation from an $n$-dimensional vector space $V$ to an $m$-dimensional vector space $W$, and let $\beta$ and $\gamma$ be ordered bases for $V$ and $W$, respectively. Prove that $\operatorname{rank}(T)=\operatorname{rank}\left(L_{A}\right)$ and that nullity $(T)=\operatorname{nullity}\left(L_{A}\right)$, where $A=$ $[T]_{\beta}^{\gamma}$.

