Linear Algebra

Final Test 2008.1.15.

- 1. (12%) Let V, W be vector spaces, $T: V \to W$ be linear, and let $U: V \to W$ be a function. Give the definitions of the followings.
 - (a) (3%) U is linear.
 - (b) (3%) N(T).
 - (c) (3%) R(T).
 - (d) (3%) $V \cong W$ (V is isomorphic to W).
- 2. (40%) Determine (by proof or counterexample) the truth or falsity of the following statements. (Note: you need to explain why the example you give is a counterexample if the statement is false.)
 - (a) (5%) Given $x_1, x_2 \in V$ and $y_1, y_2 \in W$, there exists a linear transformation $T: V \to W$ such that $T(x_1) = y_1$ and $T(x_2) = y_2$.
 - (b) (5%) Let V, W be vector spaces, if $T: V \to W, U: V \to W$ are two linear transformations such that N(T) = N(U), R(T) = R(U), then T = U.
 - (c) (5%) There does not exist linear transformation $T: V \to W$ such that N(T) = R(T).
 - (d) (5%) If $T : \mathbb{R}^2 \to \mathbb{R}^3$ is linear and T(1,1) = (1,0,2) and T(2,3) = (1,-1,4), then T(8,11) = (5,-3,16).
 - (e) (5%) Let $A \in M_{n \times n}(\mathbb{R})$, if $A^2 = I_n$, then $A = I_n$ or $A = -I_n$.
 - (f) (5%) Let V be a vector space and $T: V \to W$ be linear, then $T^2 = T_0$ if and only if $R(T) \subseteq N(T)$ (T_0 is the zero transformation from V to V).
 - (g) (5%) Let $A \in M_{n \times n}(\mathbb{R})$, if $A^2 = O$, then A = O (O is the zero matrix).
 - (h) (5%) Let $A, B \in M_{n \times n}(R)$, if AB = O, then BA = O (O is the zero matrix).
- 3. (30%) Let V, W be vector spaces and $T: V \to W$ be linear.
 - (a) (5%) Prove that N(T) and R(T) are subspaces of V and W, respectively.
 - (b) (5%) Prove that if $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V, then

 $R(T) = \operatorname{span}(T(\beta)) = \operatorname{span}(\{T(v_1), T(v_2), \cdots, T(v_n)\}).$

(c) (10%) Prove that if V is finite-dimensional, then

$$\operatorname{nullity}(T) + \operatorname{rank}(T) = \dim(V).$$

- (d) (5%) Prove that T is one-to-one if and only if $N(T) = \{0\}$.
- (e) (5%) Prove that if $\beta = \{v_1, v_2, \dots, v_n\}$ is a basis for V, then for $w_1, w_2, \dots, w_n \in W$, there exists exactly one linear transformation $U: V \to W$ such that $U(v_i) = w_i$ for $i = 1, 2, \dots n$.
- 4. (10%)
 - (a) (6%) Let $T: P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by

$$T(f) = \begin{pmatrix} f(1) - f(2) & 0\\ 0 & f(0) \end{pmatrix},$$

find N(T), R(T), nullity(T) and rank(T).

- (b) (4%) Let $T : M_{n \times n}(\mathbb{R}) \to \mathbb{R}$ be a linear transformation defined by $T(A) = \operatorname{tr}(A)$, find nullity(T) and rank(T) (tr(A) is the trace of A).
- 5. (25%)
 - (a) (8%) Let $T : \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation defined by $T(a_1, a_2) = (a_1 a_2, a_1, 2a_1 + a_2)$, β be the standard ordered basis for \mathbb{R}^2 , $\alpha = \{(1, 2), (2, 3)\}$, and $\gamma = \{(1, 1, 0), (0, 1, 1), (2, 2, 3)\}$. Find $[T]^{\gamma}_{\beta}$ and $[T]^{\gamma}_{\alpha}$.
 - (b) (5%) Let $\beta = \{1, x, x^2\}$ and $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be the ordered bases for $P_2(\mathbb{R})$ and $M_{2 \times 2}(\mathbb{R})$, respectively, and T : $P_2(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ be a linear transformation defined by $T(f) = \begin{pmatrix} f'(0) & 2f(1) \\ 0 & f''(3) \end{pmatrix}$. Compute $[T]^{\gamma}_{\beta}$.
 - (c) (7%) Let $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be the ordered bases for $M_{2\times 2}(\mathbb{R})$, and $T: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear transformation defined by $T(A) = A^t$. Find $[T]_{\gamma}$ and $[T(B)]_{\gamma}$, where $B = \begin{pmatrix} 1 & 4 \\ -1 & 6 \end{pmatrix}$.
 - (d) (5%) Let g(x) = 3 + x, $T : P_2(\mathbb{R}) \to P_2(\mathbb{R})$ and $U : P_2(\mathbb{R}) \to \mathbb{R}^3$ be linear transformations defined by T(f(x)) = f'(x)g(x) + 2f(x) and $U(a+bx+cx^2) = (a+b, c, a-b)$, respectively, and let β and γ be the standard ordered bases for $P_2(\mathbb{R})$ and \mathbb{R}^3 , respectively. Find $[UT]_{\beta}^{\gamma}$.
- 6. (15%) Let V, W be vector spaces over F and $T: V \to W$ be linear.
 - (a) (5%) Prove that if $U: V \to W$ is linear and $a \in F$, then aT + U is linear.

- (b) (5%) Prove that if $U: W \to Z$ is linear, then $UT: V \to Z$ is linear.
- (c) (5%) Prove that if T is invertible, then $T^{-1}: W \to V$ is linear.
- 7. (15%)
 - (a) (5%) Let V be a finite-dimensional vector space having ordered basis β , and $u_1, u_2, \cdots, u_n \in V$. Prove that $[u_1 + u_2 + \cdots + u_n]_{\beta} = [u_1]_{\beta} + [u_2]_{\beta} + \cdots + [u_n]_{\beta}$. (Hint: First show that $[u_1 + u_2]_{\beta} = [u_1]_{\beta} + [u_2]_{\beta}$).
 - (b) (10%) Let V, W be finite-dimensional vector spaces having ordered bases β and γ , respectively, and let $T: V \to W$ be linear. Prove that for each $u \in V$, we have $[T(u)]_{\gamma} = [T]_{\beta}^{\gamma}[u]_{\beta}$.
- 8. (15%)
 - (a) (5%) Let V and W be finite-dimensional vector spaces over F, and let $T: V \to W$ be linear. Prove that if T is invertible, then dim $(V) = \dim(W)$.
 - (b) (5%) Let V and W be vector spaces of equal (finite) dimension, and let $T: V \to W$ be linear. Prove that the following conditions are equivalent.
 - i. T is invertible
 - ii. T is one-to-one
 - iii. T is onto
 - (c) (5%) Let V and W be finite-dimensional vector spaces over F. Prove that V is isomorphic to W if and only if $\dim(V) = \dim(W)$.
- 9. (10%)
 - (a) (4%) Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(a_1, a_2, a_3) = (3a_1 2a_3, a_2, 3a_1 + 4a_2)$. Show that T is invertible.
 - (b) (6%) Let

$$V = \left\{ \left(\begin{array}{cc} a & a+b \\ 0 & c \end{array} \right) : a, b, c \in \mathbb{R} \right\}$$

Construct an isomorphism from V to \mathbb{R}^3 . (You need to show that the function you construct is indeed an isomorphism).

- 10. (30%)
 - (a) (5%) Let V, W be vector spaces, and $T: V \to W$ be linear. Suppose that T is one-to-one and S is a subset of V. Prove that if S is linearly independent, then T(S) is linearly independent.
 - (b) (5%) Let V, W be vector spaces, S be a subset of V, and $T: V \to W$ be linear. Prove that if T(S) is linearly independent, then S is linearly independent.

- (c) (6%) Let V, W be finite-dimensional vector spaces, β be an ordered basis for V, and $T: V \to W$ be linear. Prove that T is an isomorphism if and only if $T(\beta)$ is a basis for W.
- (d) (7%) Let V, W be finite-dimensional vector spaces and $T: V \to W$ be an isomorphism. Prove that for any subspace V_0 of $V, T(V_0)$ is a subspace of W, and dim $(V_0) = \dim(T(V_0))$.
- (e) (7%) Let $T: V \to W$ be a linear transformation from an *n*-dimensional vector space V to an *m*-dimensional vector space W, and let β and γ be ordered bases for V and W, respectively. Prove that rank $(T) = \operatorname{rank}(L_A)$ and that $\operatorname{nullity}(T) = \operatorname{nullity}(L_A)$, where $A = [T]^{\gamma}_{\beta}$.