MATH 413-513

RECENT RESULTS

1. Results on Linear Transformations

Here is a list of the important results we have proven about linear transformations between vector spaces.

Theorem 1. Let V and W be vector spaces over a field \mathbb{F}. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \subset$ V be a basis of V. Let $\left\{w_{1}, w_{2}, \cdots w_{n}\right\} \subset W$ be any collection of vectors. There is a unique linear map $T: V \rightarrow W$ with

$$
T\left(v_{i}\right)=w_{i} \quad \text { for all } 1 \leq i \leq n .
$$

Proposition 1. Let V and W be vector spaces over a field \mathbb{F} and let $T \in$ $\mathcal{L}(V, W)$. Then,
i) $T(0)=0$.
ii) $\operatorname{null}(T) \subset V$ is a subspace of V.
ii) range $(T) \subset W$ is a subspace of W.

Proposition 2. Let V and W be vector spaces over a field \mathbb{F} and let $T \in$ $\mathcal{L}(V, W)$. Then T is injective if and only if $\operatorname{null}(T)=\{0\}$.

Theorem 2. Let V and W be vector spaces over a field \mathbb{F} and let $T \in$ $\mathcal{L}(V, W)$. If V is finite dimensional, then range (T) is finite dimensional and

$$
\operatorname{dim}(V)=\operatorname{dim}(\operatorname{null}(T))+\operatorname{dim}(\operatorname{range}(T))
$$

Corollary 1. Let V and W be vector spaces over a field \mathbb{F} and let $T \in$ $\mathcal{L}(V, W)$. If V is finite dimensional, then
i) If $\operatorname{dim}(V)>\operatorname{dim}(W)$, then T is not injective.
ii) If $\operatorname{dim}(V)<\operatorname{dim}(W)$, then T is not surjective.

Proposition 3. Let U, V, and W be finite dimensional vector spaces over a field \mathbb{F}. Fix bases in U, V, and W. For any $S \in \mathcal{L}(U, V)$ and $T \in \mathcal{L}(V, W)$,

$$
M(T S)=M(T) M(S)
$$

Proposition 4. Let V and W be finite dimensional vector spaces over a field \mathbb{F}. Fix bases in V and W. For any $T \in \mathcal{L}(V, W)$ and any $v \in V$,

$$
M(T v)=M(T) M(v)
$$

Proposition 5. Let V and W be vector spaces over a field \mathbb{F}. A linear mapping $T \in \mathcal{L}(V, W)$ is invertible if and only if T is injective and surjective.

Theorem 3. Let V and W be finite dimensional vector spaces over a field \mathbb{F}. V and W are isomorphic if and only if

$$
\operatorname{dim}(V)=\operatorname{dim}(W)
$$

Theorem 4. Let V be a finite dimensional vector space over a field \mathbb{F} and let $T \in \mathcal{L}(V, V)$.
The following are equivalent:
i) T is invertible.
ii) T is injective.
iii) T is surjective.

Proposition 6. Let V be a finite dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(V, V) . \quad \lambda \in \mathbb{F}$ is an eigenvalue of T if and only if $T-\lambda I$ is not invertible. (By the previous result, you can replace invertible with either injective or surjective.)
Theorem 5. Let V be a vector space over $\mathbb{F}, T \in \mathcal{L}(V, V)$, and let $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n} \in \mathbb{F}$ be distinct eigenvalues of T with corresponding eigenvectors $v_{1}, v_{2}, \cdots, v_{n} \in V$. The set $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\} \subset V$ is linearly independent.
Corollary 2. Let V be a finite dimensional vector space over \mathbb{F}. Any $T \in$ $\mathcal{L}(V, V)$ has at most $\operatorname{dim}(V)$ distinct eigenvalues.

Proposition 7. Let V be a finite dimensional vector space over \mathbb{F} and let $T \in \mathcal{L}(V, V)$ have $\operatorname{dim}(V)$ distinct eigenvalues. Then V has a basis consisting of eigenvectors of T and with respect to this basis (on V as the domain of T and on V as the range of T) the matrix $M(T)$ is diagonal.
Theorem 6. Let $V \neq\{0\}$ be a finite dimensional vector space over \mathbb{C}. Then each $T \in \mathcal{L}(V, V)$ has at least one eigenvalue.
Proposition 8. Let V be a finite dimensional vector space over \mathbb{F}. Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be a basis in V and take $T \in \mathcal{L}(V, V)$.
The following are equivalent:
i) The matrix $M(T)$ with respect to $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ is upper diagonal.
ii) For each $k=1,2, \cdots, n, T\left(v_{k}\right) \in \operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)$.
iii) For each $k=1,2, \cdots, n$, the subspace $U_{k}=\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{k}\right)$ is a T invariant subspace of V.

Theorem 7. Let V be a finite dimensional vector space over \mathbb{C} and let $T \in \mathcal{L}(V, V)$. Then, there is a basis of V in which $M(T)$ is upper diagonal.
Proposition 9. Let V be a finite dimensional vector space over \mathbb{F}. Let $T \in \mathcal{L}(V, V)$ and suppose there is a basis in V in which $M(T)$ is upper diagonal. Then
i) T is invertible if and only if all entries on the diagonal of $M(T)$ are nonzero.
ii) The eigenvalues of T are precisely the diagonal entries of $M(T)$.

